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This book is a comprehensive guide to all of the mathematics, statistics and computing you

will need to successfully operate DNA microarray experiments. It is written for researchers,

clinicians, laboratory heads and managers, from both biology and bioinformatics back-

grounds, who work with or who intend to work with microarrays. The book covers all as-

pects of microarray bioinformatics, giving you the tools to design arrays and experiments,

to analyze your data, and to share your results with your organisation or with the inter-

national community. There are chapters covering sequence databases, oligonucleotide

design, experimental design, image processing, normalisation, identifying differentially

expressed genes, clustering, classification and data standards. The book is based on the

highly successful Microarray Bioinformatics course at Oxford University and, therefore, is

ideally suited for teaching the subject at the postgraduate or professional level.

Dov Stekel is Director of the Microarray Bioinformatics professional course at Oxford

University and is a visiting academic at the Department of Biochemistry there. He also op-

erates a bioinformatics consultancy, Bius, providing services to customers in the biotech-

nology industry and academia. Previously, he was the Manager of Bioinformatics at Ed

Southern’s microarray company, Oxford Gene Technology, and has worked as a Bioinfor-

matics Scientist at Glaxo Wellcome. Dov lives in London and is an avid chocolate maker.
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Foreword

DNA array technology is almost fifteen years old, and still rapidly evolving. It is one
of very few platforms capable of matching the scale of sequence data produced by
genome sequencing. Applications range from analysing single base changes, SNPs, to
detecting deletion or amplification of large segments of the genome, CGH. At present,
its most widespread use is in the analysis of gene expression levels. When carried out
globally on all the genes of an organism, this analysis exposes its molecular anatomy
with unprecedented clarity. In basic research, it reveals gene activities associated
with biological processes and groups genes into networks of interconnected activi-
ties. There have been practical outcomes, too. Most notably, large-scale expression
analysis has revealed genes associated with disease states, such as cancer, informed
the design of new methods of diagnosis, and provided molecular targets for drug
development.

At face value, the method is appealingly simple. An array is no more than a set of
DNA reagents for measuring the amount of sequence counterparts among the mRNAs
of a sample. However, the quality of the result is affected by several factors, including
the quality of the array and the sample, the uniformity of hybridisation process, and
the method of reading signals. Errors, inevitable at each stage, must be taken into
account in the design of the experiment and in the interpretation of results. It is here
that the scientist needs the help of advanced statistical tools.

Dr. Stekel is a mathematician with several years of experience in the microarray
field. He has used his expertise in a company setting, developing advanced methods
for probe design and for the analysis of large, complex data sets. This book is based on
this practical experience and, more particularly, on experience gained in designing
and running a course on Bioinformatics at the University of Oxford. The demand for
this course showed that there are hundreds of biologists wanting to learn how to get
the most from their microarray experiments. This book will help them to understand
the nature of the data and the likely sources of error. It provides them with practical
guidance and tools for handling large data sets and the statistical methods that can
deal with them.

Ed Southern
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Preface

DNA microarrays are devices that measure the expression of many thousands of genes
in parallel. They have revolutionised molecular biology, and in the past five years their
use has grown rapidly in academia, medicine, and the pharmaceutical, biotechnology,
agrochemical and food industries.

One of the principal features of microarrays is the volume of quantitative data
that they generate. As a result, the major challenge in the field is how to handle,
interpret and make use of this data. The field of bioinformatics has come to mean the
applications of mathematics, statistics and information technology in the biological
sciences, and the bioinformatics of microarrays is the answer to that challenge.

This book is a comprehensive guide to all of the bioinformatics you will need to suc-
cessfully operate DNA microarray experiments. It is written for researchers, clinicians,
laboratory heads and managers, from both biology and bioinformatics backgrounds,
who work with or who intend to work with microarrays. The book covers all aspects of
microarray bioinformatics, giving you the tools to design arrays and experiments, to
analyze your data, and to share you results with your organisation or with the interna-
tional community. It has been inspired by the Microarray Bioinformatics professional
course at Oxford University, and thus would also be suitable for teaching the subject
at postgraduate or professional level.

The book assumes a minimum knowledge of molecular biology, computer use and
statistics. On the biology front, readers will find it helpful if they have an understand-
ing of the basic principles of molecular biology, i.e., DNA, RNA, transcription and
translation, as well as the notions of genome sequencing and the existence of se-
quence databases. On the computing side, it is assumed that readers are familiar with
the World Wide Web, and how to obtain data and software from it. No programming
experience is needed to understand the book, although some of the ideas in the book
would require programming skills to implement. It is also assumed that readers are
familiar with the basic ideas of statistical descriptions of populations, such as means,
standard deviations, histograms and scatterplots.

Where possible, the chapters include worked examples using real microarray data
from published experiments. Each chapter ends with references to the data used, to
a small selection of specialized research papers and textbooks relevant for further
study, and to Internet resources and software relevant for the implementation of the
methods described in it. Unpublished data sets and errata are available at the web
site for this book, http://www.microarraybioinformatics.com.

xi



xii PREFACE

Outline of Contents

The book is split into eleven chapters:

Chapter 1: Microarrays: Making Them and Using Them, gives an introduction to
microarray technologies, the different platforms by which microarrays are man-
ufactured, and the laboratory process involved in microarray use.

Chapter 2: Sequence Databases for Microarrays, is a description of the international
sequence databases that are used for microarray design and annotation.

Chapter 3: Computer Design of Oligonucleotide Probes, describes the algorithmic
methods by which oligonucleotide probes for microarrays can be designed.

Chapter 4: Image Processing, looks at the computational algorithms used to convert
microarray images into quantitative data.

Chapter 5: Normalisation, describes methods that are used to eliminate systematic
bias introduced by the microarray platform from microarray data.

Chapter 6: Measuring and Quantifying Microarray Variability, describes methods
for measuring and quantifying the stratified variability that is a feature of mi-
croarray data.

Chapter 7: Analysis of Differentially Expressed Genes, looks at the analysis of mi-
croarray data where the microarray is being used to identify genes that may be
up-regulated or down-regulated in different tissues or conditions.

Chapter 8: Analysis of Relationships Between Genes, Tissues or Treatments, de-
scribes methods that are used to explore the relationships between different
genes or samples, including clustering and other related methods.

Chapter 9: Classification of Tissues and Samples, discusses methods that can be
used to build predictive models that use gene expression for diagnostic or prog-
nostic purposes.

Chapter 10: Experimental Design, looks at a number of issues in relation to how
to design a microarray experiment, including how to determine the number of
replicates you would need to use.

Chapter 11: Data Standards, Storage and Sharing, describes the computer tech-
nologies needed to run a microarray laboratory, and the standards by which
microarray experiments and data can be annotated and shared.
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CHAPTER ONE

Microarrays: Making Them and Using Them

SECTION 1.1 INTRODUCTION

A DNA microarray consists of a solid surface, usually a microscope slide,1 onto which
DNA molecules have been chemically bonded. The purpose of a microarray is to
detect the presence and abundance of labelled nucleic acids in a biological sample,
which will hybridise to the DNA on the array via Watson–Crick duplex formation,
and which can be detected via the label. In the majority of microarray experiments,
the labelled nucleic acids are derived from the mRNA of a sample or tissue, and so
the microarray measures gene expression. The power of a microarray is that there
may be many thousands of different DNA molecules bonded to an array, and so it is
possible to measure the expression of many thousands of genes simultaneously.

This book is about the bioinformatics of DNA microarrays: the mathematics, statis-
tics and computing you will need to design microarray experiments; to acquire, anal-
yse and store your data; and to share your results with other scientists. One of the
features of microarray technology is the level of bioinformatics required: it is not
possible to perform a meaningful microarray experiment without bioinformatics in-
volvement at every stage.

However, this chapter is different from the remainder of the book. While the other
chapters discuss bioinformatics, the aim of this chapter is to set out the basics of
the chemistry and biology of microarray technology. It is hoped that someone new
to the technology will be able to read this chapter and gain an understanding of the
laboratory process and how it impacts the quality of the data. The chapter is arranged
into two further sections:

Section 1.2: Making Microarrays, describes the main technologies by which mi-
croarrays are manufactured.

Section 1.3: Using Microarrays, describes what happens in a microarray laboratory
when a microarray experiment is performed.

SECTION 1.2 MAKING MICROARRAYS

There are two main technologies for making microarrays: robotic spotting and
in-situ synthesis.

1 Historically, microarrays have also been produced using nylon filters and larger glass slides.

1



2 MICROARRAYS: MAKING THEM AND USING THEM

(a) (b)

(c) (d)

Figure 1.1: Spotting robot. (a) An example of a spotting robot. There are many different robots on
the market; this is a Genetix spotting robot located at the Mouse Genetics Unit in Harwell, Oxfordshire.
(b) The pins are held in a cassette in a rectangular grid, which in turn is held on a robot arm that can
be moved between the microtiter well plates and the glass arrays to deposit liquid. (c) The number of
pins in the cassette can vary. The more pins, the greater the throughput of the robot, but the greater
the propensity for pin-to-pin variability. Each pin will spot a different grid on the array (Chapter 4). (d)
Most pins in modern use have a reservoir that holds sample and so can print multiple features – usually
on different arrays – from a single visit to the well containing probe. Earlier robots use solid pins, which
can only print one feature before needing to collect more DNA from the well.
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Figure 1.2: Spotted array synthesis. There are several steps involved in the synthesis of spotted ar-
rays. First is the production of the probes. cDNA probes are made via highly parallel PCR; oligonucleotide
probes have to be presynthesised. The next step is the spotting step. The robot arm moves the cassette
containing the pins over one of the microtiter plates containing probe and dips the pins into the wells
to collect DNA. The arm is then moved over the first array and the cassette is moved down so that the
pins touch the glass and DNA is deposited on the surface. If more than one array is being synthesised,
the cassette is moved to the subsequent arrays. Before collecting the next DNA to be spotted, the pins
are washed to ensure no contamination. The final step of array production is fixing, in which the surface
of the glass is modified so that no additional DNA can stick to it.

Spotted Microarrays

This is the technology by which the first microarrays were manufactured. The array is
made using a spotting robot (Figure 1.1a) via three main steps (Figure 1.2):

1. Making the DNA probes2 to put on the array
2. Spotting the DNA onto the glass surface of the array with the spotting robot
3. Postspotting processing of the glass slide

There are three main types of spotted array (Table 1.1), which can be subdivided
in two ways: by the type of DNA probe, or by the attachment chemistry of the probe
to the glass.

The DNA probes used on a spotted array can either be polymerase chain reaction
(PCR) products or oligonucleotides. In the first case, highly parallel PCR is used to
amplify DNA from a clone library, and the amplified DNA is purified. In the second
case, DNA oligonucleotides are presynthesised for use on the array.

2 There are now three camps in the microarray community as to what to call the DNA on the array
and the DNA in solution. Throughout this book, we will use the “Southern” terminology and refer
to the DNA on the array as probes and the labeled DNA in solution as target. Other researchers refer
to the DNA on the array as target and the labeled DNA in solution as probe. More recently, MIAME
(Minimal Information About a Microarray Experiment) introduced a new convention of referring
to the DNA on the array as reporters and the DNA in solution as the hybridisation extract. MIAME
conventions are described in full in Chapter 11, and MIAME terms are detailed in the Appendix.
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TABLE 1.1

Surface Chemistry

DNA Probes Covalent Non-covalent

Oligonucleotides �
cDNAs � �

Note: There are three types of spotted microarrays, which can be thought about in two different
ways. The DNA probes can be oligonucleotides or cDNAs; the surface chemistry can be covalent or
non-covalent. Oligonucleotide probes can only be attached covalently; cDNA probes can be attached
either covalently or non-covalently. Covalent attachment is via an aliphatic amine (NH2) group added
to the 5′ end of the DNA probe, and consequently the probes are tethered to the glass from the 5′ end.
Non-covalent attachment is via electrostatic attraction between amine groups on the glass slide and
the phosphate groups on the DNA probe backbone; thus the DNA probe is attached to the glass by its
backbone.

The attachment chemistry can either be covalent or non-covalent. With covalent
attachment, a primary aliphatic amine (NH2) group is added to the DNA probe and
the probe is attached to the glass by making a covalent bond between this group and
chemical linkers on the glass. With oligonucleotide probes, the amine group can be
added to either end of the oligonucleotide during synthesis, although it is more usual
to add it to the 5′ end of the oligonucleotide. With cDNA probes, the amine group
is added to the 5′ end of the PCR primer from which the probes are made. Thus the
cDNA probes are always attached from the 5′ end.

With non-covalent attachment, the bonding of the probe to the array is via electro-
static attraction between the phosphate backbone of the DNA probe and NH2 groups
attached to the surface of the glass. The interaction takes place at several locations
along the DNA backbone, so that the probe is tethered to the glass at many points.
Because most oligonucleotide probes are shorter than cDNAs, these interactions are
not strong enough to anchor oligonucleotide probes to glass. Therefore, non-covalent
attachment is usually only used for cDNA microarrays.

The DNA probes are organised in microtiter well plates, typically 384 well plates.
Most modern spotting robots will use a number of plates to print arrays, so the plates
are arranged in a “hotel,” whereby the robot is able to gain successive access to each
of the plates. The spotting robot itself consists of a series of pins arranged as a grid
and held in a cassette (Figures 1.1b and 1.1c). The pins are used to transfer liquid from
the microtiter plates to the glass array.3

There are a number of different designs of pins. The first spotting robots used
solid pins (Figure 1.1b); these can only hold enough liquid for one spot on the array,
thus requiring the pin cassette to return to the plate containing probe before printing
the next spot. Most array-making robots today have pins with a reservoir that holds

3 Not every spotting robot is a pin-based system: Perkin Elmer sell some robots which use a piezo-
electric system to fire tiny drops of liquid onto the arrays. These are in the minority in the microarray
field.
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Figure 1.3: In-situ synthesis of oligonucleotides. The oligonucleotides are built on the glass array one
base at a time. At each step, the base is added via the reaction between the hydroxyl group 5′ of the
terminal base and the phosphate group of the next base. There is a protective group on the 5′ of the
base being added, which prevents the addition of more than one base at each step. Following addition,
there is a deprotection step at which the protective group is converted to a hydroxyl group to allow
addition of the next base.

liquid (Figure 1.1d). This enables higher throughput production of arrays because
each probe can be spotted on several arrays without the need to return the pins to the
sample plates.

The typical printing process follows five steps (Figure 1.2):

1. The pins are dipped into the wells to collect the first batch of DNA.
2. This DNA is spotted onto a number of different arrays, depending on the number

of arrays being made and the amount of liquid the pins can hold.
3. The pins are washed to remove any residual solution and ensure no contami-

nation of the next sample.
4. The pins are dipped into the next set of wells.
5. Return to step 2 and repeat until the array is complete.

In the final phase of array production, the surface of the array can be fixed so that
no further DNA can attach to it. There are many fixing processes that depend on the
precise chemistry on the surface of the glass. The desired outcome is always the same:
we do not want DNA target from the sample to stick to the glass of the array during
hybridisation, so the surface must be modified so this does not happen. It is also
common to modify the surface so that the glass becomes more hydrophilic because
this aids mixing of the target solution during the hybridisation stage. Some microarray
production facilities do not fix their arrays.

In-Situ Synthesised Oligonucleotide Arrays

These arrays are fundamentally different from spotted arrays: instead of presynthe-
sising oligonucleotides, oligos are built up base-by-base on the surface of the array
(Figure 1.3). This takes place by covalent reaction between the 5′ hydroxyl group of
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Figure 1.4: Affymetrix technology. Affymetrix arrays are manufactured using in-situ synthesis with a
light-mediated deprotection step. During each round of synthesis, a single base is added to appropriate
parts of the array. A mask is used to direct light to the appropriate regions of the array so that the
base is added to the correct features. Each step requires a different mask. The masks are expensive to
produce, but once made, it is straightforward to use them to manufacture a large number of identical
arrays. (Reproduced with Permission from Affymetrix Inc.)

the sugar of the last nucleotide to be attached and the phosphate group of the next
nucleotide. Each nucleotide added to the oligonucleotide on the glass has a protective
group on its 5′ position to prevent the addition of more than one base during each
round of synthesis. The protective group is then converted to a hydroxyl group either
with acid or with light before the next round of synthesis. The different methods for de-
protection lead to the three main technologies for making in-situ synthesised arrays:

1. Photodeprotection using masks: this is the basis of the Affymetrix® technology.
2. Photodeprotection without masks: this is the method used by Nimblegen and

Febit.
3. Chemical deprotection with synthesis via inkjet technology: this is the method

used by Rosetta, Agilent and Oxford Gene Technology.

Affymetrix Technology

Affymetrix arrays use light to convert the protective group on the terminal nucleotide
into a hydroxyl group to which further bases can be added. The light is directed to
appropriate features usingmasks that allow light to pass to some areas of the array but
not to others (Figure 1.4). This technique is known as photolithography and was first
applied to the manufacture of silicon chips. Each step of synthesis requires a different
mask, and each mask is expensive to produce. However, once a mask set has been
designed and made, it is straightforward to produce a large number of identical arrays.
Thus Affymetrix technology is well suited for making large numbers of “standard”
arrays that can be widely used throughout the community.

Maskless Photodeprotection Technology

This technology is similar to Affymetrix technology in that light is used to convert the
protective group at each step of synthesis. However, instead of using masks, the light
is directed via micromirror arrays, such as those made by Texas Instruments. These
are solid-state silicon devices that are at the core of some data projectors: an array of
mirrors is computer controlled and can be used to direct light to appropriate parts
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Figure 1.5: Maskless photodeprotection. This system also uses light-mediated deprotection. How-
ever, instead of using a physical mask, the array is synthesised using a computer-controlled micromir-
ror array. This consists of a large number of mirrors embedded on a silicon chip, each of which can
move between two positions: one position to reflect light, and the other to block light. At each step,
the mirrors direct light to the appropriate parts of the array. This technology is used by Nimblegen and
Febit.

of the glass slide at each step of oligonucelotide synthesis (Figure 1.5). This is the
technology used by Nimblegen and Febit.

Inkjet Array Synthesis

Instead of using light to convert the protective group, deprotection takes place chemi-
cally, using the same chemistry as a standard DNA synthesiser. At each step of synthe-
sis, droplets of the appropriate base are fired onto the desired spot on the glass slide via
the same nozzles that are used for inkjet printers; but instead of firing cyan, magenta,
yellow and black ink, the nozzles fire A, C, G and T nucleotides (Figure 1.6).

One of the main advantages of micromirror and inkjet technologies over both
Affymetrix technology and spotted arrays is that the oligonucleotide being synthesised
on each feature is entirely controlled by the computer input given to the array-maker
at the time of array production. Therefore, these technologies are highly flexible, with
each array able to contain any oligonucleotide the operator wishes. However, these
technologies are also less efficient for making large numbers of identical arrays.

Synthesis Yields

The different methods of oligonucleotide synthesis have different coupling efficien-
cies: this is the proportion of nucleotides that are successfully added at each step of
synthesis. Photodeprotection has a coupling efficiency of approximately 95%, whereas
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Figure 1.6: Inkjet array synthesis. This technology uses chemical deprotection to synthesise the
oligonucleotides. The bases are fired onto the array using modified inkjet nozzles, which, instead of
firing different coloured ink, fire different nucleotides. At each step, the appropriate nucleotide is fired
onto each spot on the array. The nozzles are computer controlled, so any oligonucleotides can be syn-
thesised on the array simply by specifying the sequences in a computer file. This is the technology used
by Rosetta, Agilent and Oxford Gene Technology.

acid-mediated deprotection of dimethoxytrityl protecting groups has a coupling effi-
ciency of approximately 98%. The effect on the yield of full-length oligos is dependent
on the length of the oligonucleotide being synthesised: the longer the oligonucleotide,
the worse the yield. This dependence is multiplicative, so that even a small difference
in coupling efficiency can make a large difference in the yield of long oligonucleotides
(Table 1.2).

The composition of the final population of oligonucleotides produced depends
on whether or not a capping reaction is included during synthesis. Capping is used
by Affymetrix and prevents further synthesis on a failed oligonucleotide. As a result,

TABLE 1.2

Oligonucleotide Coupling Oligonucleotide
Length (s) Efficiency (p) Yield (p s)

25 95% 28%
25 98% 60%
60 95% 5%
60 98% 30%

Note: The yield of in-situ synthesised oligonucleotides of desired length s depends on the coupling
efficiency p according to the formula yield = ps . So the longer the oligonucleotide, the worse the
yield. Photodeprotection has a coupling efficiency of approximately 95%, while chemical deprotection
has a coupling efficiency of approximately 98%. For a 25-base oligonucleotide, the yields are 28 and
60%, respectively. For a 60-base oligonucleotide, the yields are 5 and 30%, respectively. This is why
Affymetrix is restricted to making 25-base oligonucleotides: the coupling efficiency is too low to
produce longer oligos. Companies using chemical deprotection are able to synthesise 60-base oligos
with similar yield to Affymetrix’s 25-base oligos.
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Figure 1.7: Array quality. (a) On Affymetrix arrays the features are rectangular regions. The masks
refract light, so there is leakage of signal from one feature to the next. The Affymetrix image-processing
software compensates for this by using only the interior portions of the features. (b) Spotted arrays
produce spots of variable size and quality. This image shows some of this variation; we cover image
processing of spotted arrays in detail in Chapter 4. (c) Inkjet arrays tend to be of the highest quality,
with regular, even spots. (Please see also the color section at the middle of the book.)

all oligonucleotides on a feature will have the same start, but will be of different
lengths (e.g., with a coupling efficiency of 95%, each feature will be 4.8% monomers,
4.5% dimers, 4.3% trimers, etc.). In contrast, uncapped oligonucleotides allow further
synthesis to take place. Therefore, all the oligonucleotides on a feature will be of similar
length but may contain random deletions (e.g., with a coupling efficiency of 95% and
synthesis of 20 mers, the average probe length would be 19 bases, with such probes
containing one deletion).

Spot Quality

The quality of the features depends on the method of array production (Figure 1.7).
Spotted array images can be of variable quality, and Chapter 4 is dedicated to the
bioinformatics of image processing associated with these arrays. Affymetrix arrays
have the problem that the masks refract light, so light leaks into overlapping features;
Affymetrix compensates for this with their image-processing software, so the user
need not worry about this problem. Inkjet arrays tend to produce the highest quality
features.

SECTION 1.3 USING MICROARRAYS

There are four laboratory steps in using a microarray to measure gene expression in
a sample (Figure 1.8):

1. Sample preparation and labelling
2. Hybridisation
3. Washing
4. Image acquisition
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Tissue 2Tissue 1

RNA Extraction

mRNA

Sample preparation
and labelling

Cy5Cy3

Hybridisation
Washing Image Acquisition

Figure 1.8: Steps in using a microarray. The first step is to extract the RNA from the tissue(s) of
interest. With most technologies, it is common to prepare two samples and label them with two different
dyes, usually Cy3 (green) and Cy5 (red). The samples are hybridised to the array simultaneously and
incubated for between 12 and 24 hours at between 45 and 65˚C. The array is then washed to remove
sample that is not hybridised to the features.

Sample Preparation and Labelling

There are a number of different ways in which a sample can be prepared and labelled
for microarray experiments. In all cases, the first step is to extract the RNA from the
tissue of interest. This procedure can be difficult to reproduce, and there is much
variability among the individual scientists performing the extraction.

The labelling step depends on the technology used. For the Affymetrix platform, one
constructs a biotin-labelled complementary RNA for hybridising to the GeneChip®.
The protocols are very carefully defined by Affymetrix,4 so every Affymetrix labora-
tory should be performing identical steps. This has the advantage that it is easier to
compare the results of experiments performed in different Affymetrix laboratories,
because the procedures they will have followed should be the same.

Although it is possible to hybridise complementary RNA to other types of microar-
rays, it is much more common to hybridise a complementary DNA to these arrays.
In the past, the DNA has been radioactively labelled, but now most laboratories use
fluorescent labelling, with the two dyes Cy3 (excited by a green laser) and Cy5 (excited
by a red laser). In the most common experiments, two samples are hybridised to the
arrays, one labelled with each dye; this allows the simultaneous measurement of both

4 See the reference to the Affymetrix manual at the end of the chapter.
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samples. In the future, it is possible that more than two labelled samples could be
used.

There are three common ways to make labelled cDNA. The most common method
is direct incorporation by reverse transcriptase. The mRNA is primed with a poly-T
primer: this starts the reverse transcription from the polyadenylation signal at the 3′

untranslated region (UTR) of the mRNA. In addition to the nucleic acids added for the
transcription reaction (dA, dC, dG and dT), a proportion of dCTP (or sometimes dUTP
used in place of dT) to which the fluorescent Cy dye has been covalently attached is
added to the solution. This means that a proportion of the “C”s in the cDNA product
have Cy fluorophors attached to them.

The transcripts produced by this method can be between 0 and 3,000 bases long,
and are typically a few hundred bases. They will always be complementary to the 3′

end of the mRNA, so oligonucleotide or cDNA probes on the array must be in the
3′ region of the mRNA, otherwise they will not detect the labelled target produced.
Fortunately, the 3′ UTR also tends to be the most variable region of genes, so this is
an aid in designing specific probes (Chapter 3).

The next most common method is indirect labelling. This method also uses a re-
verse transcription reaction, primed from the 3′ end of the mRNA with a poly-T primer.
However, instead of using fluorescently labelled dC, the reaction takes place with
an amino-allyl-modified dC. This is a much smaller molecule than the Cy-modified
dCTP, so the reverse transcription is more efficient. Following reverse transcription,
the cDNA is reacted with an active ester of the dye, so that the dye becomes attached
to the modified dCs in the cDNA. This method also has the advantage that each target
has the same “foreign” base incorporated at the same rate. This contrasts with direct
incorporation, where Cy5 is incorporated less well by reverse transcriptase than Cy3.

As with direct incorporation, indirect labelling produces transcripts of a few hun-
dred bases, complementary to the 3′ end of the mRNA. This has similar implications
for the design of probes for the array.

The third and least common method for labelling is by random primed labelling
using the Klenow fragment of DNA polymerase I. The first step is a reverse trans-
cription reaction, which generates a single-stranded cDNA. The cDNA is then primed
with random primers and extended using the Klenow fragment of DNA polymerase I
in the presence of labelled dC. The product is a mixture of shorter labelled transcripts,
complementary to both strands of the gene.

Because the labelled fragments are on both strands, there is greater potential for
cross-hybridisation, and so it is important to check for cross-hybridisation on both
strands when designing probes for the arrays (Section 3.3).

Hybridisation

Hybridisation is the step in which the DNA probes on the glass and the labelled
DNA (or RNA) target form heteroduplexes via Watson–Crick base-pairing (Figure 1.9).
Hybridisation is a complex process that is not fully understood. It is affected by many
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Labelled targets 

in solution

Probes on array

Heteroduplexes

Hybridisation

Glass substrate Glass substrate

Figure 1.9: Hybridisation. In the hybridisation process, labelled target in solution forms heterodu-
plexes with probes on the array via Watson–Crick base-pairing between the probes and the target.
Unbound target is then washed off the array, so that the only fluorescent signal on the array is in the
heteroduplexes. The microarray measures the level of fluorescence on each of the features, and from
this we infer the absolute or relative amount of DNA bound to each feature on the array.

conditions, including temperature, humidity, salt concentrations, formamide con-
centration, volume of target solution and operator.

There are two main methods for hybridisation: manual and robotic. In a manual hy-
bridisation, the array is placed in a hybridisation chamber (Figure 1.10a). The scientist

(a) (b)

Figure 1.10: Hybridisation systems. (a) Manual hybridisation takes place in chamber; the target is
injected onto the slide; the chamber is sealed with a cover slip and placed in an incubator. (b) Hybridi-
sation station; this station has six chambers in which all hybridisation, incubation and washing takes
place. Robotic hybridisation reduces the variability of microarray experiments, but care must be taken
not to break the arrays in the robot. This GeneTac station is located at the Mouse Genetics Unit in
Harwell, Oxfordshire.
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injects the hybridisation solution containing the target onto the array under a cover
slip before sealing the chamber. The chamber is placed in an incubator which keeps
the array at the correct temperature; some incubators also agitate the array to ensure
mixing of the hybridisation solution over the surface of the array. Most hybridisations
take place over a period of 12 to 24 hours.

Alternatively, hybridisation can be performed robotically by a hybridisation station
(Figure 1.10b). Robotic hybridisation has the advantage over manual hybridisation
in that it provides much better control of the temperature of the target and slide.
The consistent use of a hybridisation station also reduces the variability between
hybridisations and operators.

Most hybridisations are performed at between 45 and 65˚C, depending on the
type of array used. With oligonucleotide arrays, arrays with different-length oligonu-
cleotides may require different temperatures. The addition of formamide enables
mixing of the hybridisation solution of the target over the array but has the effect
of decreasing the apparent melting temperature of duplexes. This has the positive
benefit of reducing spatial hybridisation irregularities on the array – a matter that
is discussed in Chapters 4 and 5. Different laboratories have used a wide range of
formamide concentration in the target solution, between 0 and 50%. The use of no
formamide at 65˚C gives approximately equivalent thermodynamic conditions as the
use of 50% formamide at 45˚C.

It is also usual to include Na+ in the hybridisation solution.5 The less Na+ present,
the greater the stringency of the hybridisation; the thermodynamic effect of Na+

concentration is well characterised and described in Chapter 3. Most hybridisa-
tions take place in approximately 1M Na+ [between 3 and 5 standard saline citrate
(SSC)].

It is also common to add DNA to the hybridisation solution that blocks unwanted
cross-hybridisation. The two most common additions are some type of repetitive DNA
that masks genomic repeat sequence, such as COT-1, and either poly-A or poly-T to
mask the polyadenylation sites on the cDNA.

Washing

After hybridization, the slides are washed. There are two reasons for this. The first
is to remove excess hybridisation solution from the array. This ensures that the only
labelled target on the array is the target that has specifically bound to the features on
the array and thus represents the DNA that we are trying to measure.

The second reason is to increase the stringency of the experiment by reducing
cross-hybridisation. This can be achieved either by washing in a low-salt wash (e.g.,
0.1 SSC and 0.1 SDS, a detergent that removes grease) or with a high-temperature
wash. In either case, the aim is that only the DNA complementary to each of the
features will remain bound to the features on the array. Most automatic hybridisation
stations include a washing cycle as part of the automated process.

5 It is also possible, but much less common, to use K+.
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Laser

PMT

Dye

Glass Slide

Objective Lens

Detector lens

Pinhole

Beam-splitter

Figure 1.11: Workings of a scanner. The majority of microarray scanners work in a similar way. A
laser is used to excite the dyes incorporated into the heteroduplexes on the surface of the array; the
fluorescence of the dye is then measured by a PMT and converted to digital signal. Each pixel on the
scanned image represents a single point of measurement of fluorescence from the laser. The slide (or
in the case of some scanners, the optics) is moved so that the laser excites the whole of the slide.
Two-colour arrays are scanned twice: once with a green laser (for Cy3; excitation wavelength is 550nm
and emission wavelength is 581nm) and once with a red laser (for Cy5; excitation wavelength is 649nm
and emission wavelength is 670nm).

Image Acquisition

The final step of the laboratory process is to produce an image of the surface of the
hybridised array. The heteroduplexes on the array, where the target has bound to the
probe, contain dye that fluoresces when excited by light of an appropriate wavelength.
The slide is placed in a scanner, which is a device that reads the surface of the slide.
Most scanners have a similar design (Figure 1.11). The scanner contains one or more
lasers that are focussed onto the array: most scanners for two-colour arrays use two
lasers.

Each pixel on the digital image represents the intensity of fluorescence induced by
focussing the laser at that point on the arrray (Figure 1.12a). The dye at that point will
be excited by the laser and will fluoresce; this fluorescence is detected by a photo-
multiplier tube (PMT) in the scanner. In order to scan the whole array, the laser must
be focussed on every point on the array. This is achieved either by moving the slide
so that the laser can focus on different points, or by shifting the optics to achieve the
same result.

It is usual for the size of the physical space represented by the pixel to be the same
as the spot size of the laser. When this is the case, the majority of the light measured
at that pixel comes from that point on the array (Figure 1.12b). It is also possible to set
the pixel size to be smaller than the laser spot. In that case, much of the light at each
pixel comes from neighbouring areas on the array (Figure 1.12c). This has the effect



SECTION 1.3 USING MICROARRAYS 15

of blurring the image and can mask minor irregularities in the feature (Figures 1.12d
and 1.12e).

With two-colour arrays, the output of the scanner is usually two monochrome
images: one for each of the two lasers in the scanner (Figure 1.13a). These are combined
to create the familiar red–green false colour images of microarrays. Both the mono-
chrome and two-colour images are usually stored as tagged image file format (TIFF).
The array data is stored in 16 bits. This means that the intensity of each pixel in each
channel is quantified as a 16-bit number, which takes values between 0 and 216 − 1,
which is equal to 65,535. Since background is approximately 100, and saturation can
occur when the average pixel intensity is larger than 50,000, the microarray can detect
intensities over an approximately 500-fold dynamic range. With 10-µm pixel sizes, a
typical microarray image will be 7,500 × 2,200 pixels. This means that each of the two

5-µm pixel grid

5-µm scanning laser beam

100-µm diameter microarray spot

(a)

(b)

0.1%

2.2%

0.1%

2.2%

91%

2.2%

0.1%

2.2%

0.1%

5-µm
scan array
laser beam

5-µm pixel

Figure 1.12: The pixels comprising a feature. (a) A false-colour image of the pixels from a single scan
of a 100-µm microarray feature. The size of the laser spot is 5µm. The pixel size has been set to 5µm
so that each pixel represents the area from the size of the laser spot. (b) The intensity of light from a
laser is normally distributed. With a 5-µm laser size and 5-µm pixel size, 91% of the emission from the
array resulting from the laser is measured at that pixel. (c) With a 10-µm laser size and 5-µm pixel size,
the majority of light from the laser is measured in neighbouring pixels. This has the effect of blurring the
image. (d) Two neighbouring features on an array with a streak through them, measured with a laser
spot size of 5 µm and a pixel size of 5µm. The streak is clear on both spots and so the spot can be
identified as problematic. (e) The same features scanned with laser spot size of 10µm and a pixel size
of 5µm. The streak has become blurred. (Please see also the color section at the middle of the book.)

(continued )
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(c)

2.4%

10%

2.4%

10%

47%

10%

2.4%

10%

2.4%

(d) (e)

10-µm laser beam

5-µm pixel

Figure 1.12: (continued )

TIFF images is 32 Mb; these are large files so if you are producing a large number of
microarray images, data storage becomes an important consideration (Chapter 11).

The pixel resolution of the image should be chosen so that each feature has suf-
ficient pixels to make the measurement of the intensity of the feature robust from
pixel-to-pixel noise. It is normally recommended that there should be at least 50 pix-
els per feature on the array.

KEY POINTS SUMMARY

� Making and using microarrays is a complex laboratory process.
� There are many sources of variability in microarray experiments.
� The main microarray technologies are

� Spotted cDNAs, the most common type of microarray;
� Spotted oligonucleotides: increasingly common and better quality than spotted

cDNAs;
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(a) (b)

(c)

Figure 1.13: Output of scanners. (a) This is the scanner output for a part of a microarray – in this case
one of twelve 16× 16 blocks of features. This is the monochrome image of the Cy3 (green) channel.
(b) The scanner output for the same part of the array but using the Cy5 (red) channel. (c) It is usual to
combine the two monochrome images into a composite false-colour image of the array. Green features
correspond to features that are expressed more in the sample labelled with Cy3 than the sample labelled
with Cy5, and so will be bright in (a) and dark in (b). Similarly, red spots will be bright in (b) and dark in
(a). Yellow features have a similar level of expression in both samples. Dark features are low expressed
in both samples. (Please see also the color section at the middle of the book.)

� Light-directed in-situ synthesised arrays: e.g., Affymetrix, the most common
commercial platform; and

� Inkjet in-situ synthesised arrays, the highest quality arrays but not widely
available.

� The steps in using a microarray are
� Target preparation, which introduces most variability;
� Hybridisation, also a source of variability, which can be reduced by robotics;
� Washing, which can increase stringency – variability can be reduced by robotics;

and
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� image acquisition: using a scanner to produce a digital image of the array that is
stored on computer.

RECOMMENDED READING

Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. 1995. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray.Science270(5235):
467–70.

The paper that started the microarray revolution.

Genechip Expression Analysis Technical Manual

Describes the protocols for an Affymetrix experiment. Available from

http://www.affymetrix.com/technology/ge analysis/index.affx

Hughes, T., Mao, M., Jones, A.R., Burchard, J., Marton, M.J., Shannon, K.W., Lefkowitz,
S.M., Ziman, M., Schelter, J.M., Meyer, M.R., Kobayashi, S., Davis, C., Dai, H., He,
Y.D., Stephaniants, S.B., Cavet, G., Walker, W.L., West, A., Coffet, E., Shoemaker, D.,
Stoughton, R., Blanchard, A., Friend, S., and Linsley, P.S. 2001. Expression profil-
ing using microarrays fabricated by an ink-jet oligonucleotide synthesiser. Nature
Biotechnology 19: 342–47.

Paper describing the use of inkjet technology containing technical information about

hybridisation conditions and stringency.

INTERNET RESOURCES

There are several excellent web sites that give a general overview of microarray technology,

the laboratory process, and often links to useful software. Of particular interest are

� The Institute for Genomic Research microarray pages:
http://www.tigr.org/tdb/microarray/

� The microarray project at the National Human Genome Research Institute:
http://research.nhgri.nih.gov/microarray/main.html

� Microarrays.org is a public source for microarray protocols and software:
http://www.microarrays.org/

SCANNERS

A comprehensive review of microarray scanners, prepared by Y.F. Leung at the Chinese

University, Hong Kong, is available at

http://www.lab-on-a-chip.com/files/mascanner.pdf



CHAPTER TWO

Sequence Databases for Microarrays

SECTION 2.1 INTRODUCTION

Chapter 1 introduced microarray technologies and discussed the use of microarrays in
the laboratory. The remainder of the book is dedicated to microarray bioinformatics.
This chapter, together with the next chapter, discusses the bioinformatics required
to design a DNA microarray. In this chapter, we look at the sequence databases that
are used to select and annotate the genes that the microarray detects and, thus, the
sequences that will appear on the array. Chapter 3 looks at the computer design of
oligonucleotide probes for oligonucleotide arrays.

There are two broad questions and one more specific consideration that this chap-
ter seeks to address:

1. What resources could I use to designmy own custom array?
If you are designing a custom microarray to study a particular disease, tissue or or-
ganism, you will need to identify the genes that might be expressed in your samples
and identify the sequences of those genes. One of the aims of this chapter is to give
an understanding of which databases you could use to select such genes.

2. How can I findmore information about the sequences of the genes onmy array?
DNA microarrays contain sequences that will have derived from DNA sequence
databases. The output file containing the numerical results of the microarray experi-
ment that you will analyse also contains a number of fields that relate these sequences
to the databases from which they derive. This chapter describes the meanings of these
fields and the nature of the databases.

EXAMPLE 2.1 DATA FILES

Table 2.1 shows the gene identification fields from the files containing data from
four published experiments whose data are available on the World Wide Web.1 There
are three two-colour arrays from human, arabidopsis and yeast, and an example of
Affymetrix data. In the example you can see a number of field names:

� Clone IDs
� Gene names

1 References to the work from which the data derives are included at the end of the chapter.
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Figure 2.1: Splice variants of CNR1. Homo sapiens Cannabinoid Receptor 1 is a 7-trans-membrane
protein that responds to THC, the psychoactive ingredient in cannabis. It has three splice variants:
variants 1 and 2 encode the same protein, and variant 3 encodes a shorter protein. Variant 1 (1,755
bases) has a unique 85-base sequence in the 5′ UTR, and a unique 61-base sequence at the 3′ UTR.
Variants 1 and 2 share a 63-base sequence that is at the 5′ end of variant 2, and a 167-base sequence
that is spliced at a site between bases 103 and 104 of variant 3. Variant 2 (5,472 bases) has a unique
3,863-base sequence at its 3′ UTR. All of the bases in variant 3 (1,252 bases) are found in variants 1
and 2. The 3′ UTRs for variants 1 and 2 are unique, so it would be possible to design probes that would
be specific for these variants. Variant 3, however, has a 3′ UTR that is part of the sequence of variants
1 and 2. Furthermore, there are only 188 bases from the 3′ end of variant 1 to the 3′ end of variant
3. If the target is labelled via poly-T primed reverse transcription, then target of variants 1 and 2 will
both hybridise to a probe for variant 3. The only sequence in variant 3 that is unique to variant 3 is the
sequence across the splice site into which the 167 bases that feature in variants 1 and 2 are spliced. In
order for such a probe to detect variant 3 target, it would be necessary to make labelled target using
random priming of the sample mRNA.

� GenBank accession numbers
� UniGene cluster IDs
� Gene information and descriptions
� Genomic information

3. What information is available on splice variant genes and how does this impact
array design?
A gene has splicevariants if the organism can make different transcripts of the gene by
using different exons. It is thought that many genes from eukaryotic organisms have
splice variants. The different splice variants of a gene have different sequences; there-
fore, when designing and using microarrays, it is important to know what sequences
are on the arrays. Is there a single probe on the array for the gene of interest that will
measure all variants, or would you want specific probes for each of the variants?

EXAMPLE 2.2 SPLICE VARIANTS OF CNR1

The gene Cannabinoid Receptor 1 has three splice variants in humans (Figure 2.1):

� Splice Variant 1, accession NM 001840 (1,755 bases)
� Splice Variant 2, accession NM 016083 (5,472 bases)
� Splice Variant 3, accession NM 033181 (1,252 bases)

In this example, all three splice variants have different 3′ UTRs and any microarray
that will measure this gene will need to be carefully designed.



22 SEQUENCE DATABASES FOR MICROARRAYS

1985 1990 1995 2000

Year

N
um

be
r 

of
 N

uc
le

ot
id

es

10
6

10
7

10
8

10
9

(a)

10
10

1985 1990 1995 2000

Year

N
um

be
r 

of
 S

eq
ue

nc
es

10
3

10
4

10
5

10
6

10
7

(b)



SECTION 2.2 PRIMARY SEQUENCE DATABASES 23

The remainder of this chapter looks at the databases available that will allow you
to answer these or similar questions. There are three further sections:

Section 2.2: Primary Sequence Databases, discusses the sequence databases that
hold all published sequence data – EMBL, GenBank and the DNA Data Bank of
Japan (DDBJ).

Section 2.3: Secondary Sequence Databases, discusses two Expressed Sequence Tag
(EST) resources that are most commonly used for microarray design – UniGene
and the TIGR Gene Indices – and also looks at the Reference Sequence project
for high-quality mRNA sequences.

Section 2.4: Genomic Database Resources, looks at genomic databases – Ensembl
for complex organisms such as humans, and databases for organisms with small
genomes, namely, microbes and yeast.

SECTION 2.2 PRIMARY SEQUENCE DATABASES

These are the international sequence databases that contain all published sequences.
They date back to 1982, when it became clear that there was a need to publish and
share DNA sequences. The American initiative, GenBank, and the European initia-
tive, EMBL (European Molecular Biology Laboratory), were launched simultaneously
in June 1982, each with approximately 600 sequences. Since that time, the sizes of the
databases have grown exponentially, doubling approximately every 17 months (Fig-
ure 2.2). In December 2002, GenBank had more than 22 million sequences and more
than 28 billion nucleotides (release 133).

In 1987, the DDBJ was started as a Japanese equivalent of GenBank and EMBL. In
1992, the three databases entered into a collaboration to share all sequences. Since
that date, the three databases contain almost identical sequence information. Any se-
quence submitted to one of the databases will automatically be added to the other two.

The success of these sequence databases has resulted not only from the advances
in sequencing technology, but also from the advances in computer technology. The
databases require significant computing power and storage to operate, but most im-
portant is the role of the Internet. Everyone with access to the Internet has the ability
to submit sequences to these databases, and so they are truly representative of global
research. Similarly, everyone with access to the Internet can query or download these
databases, so the entire world has unrestricted access to any sequence submitted by
any laboratory.

Figure 2.2: Growth of public sequence databases. (a) Log plot of the number of nucleotides in the
GenBank database between 1982 and 2001. The straight line is indicative of exponential growth in
the number of nucleotides, with a doubling time of approximately 17 months. The most recent release
of GenBank (release 133) has approximately 2.8 × 1010 (28 billion) nucleotides. (b) Log plot of the
number of sequences in the GenBank database between 1982 and 2001. There is similar exponential
growth. The most recent release of GenBank (release 133) has approximately 2.2×107 (22 million)
sequences.
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BOX 2.1 GenBank File for AA830216

Example entry of a GenBank format file for the sequence AA830216; this sequence is an EST. The entry gives a
wide range of information about the sequence, including the type of sequence, species, date submitted, the
publication associated with the sequence and the sequence itself. The file format has a text identifier at the
beginning of each section to state what type of information it contains.

LOCUS AA830216 407 bp mRNA linear EST 18-MAR-1998
DEFINITION oc45c10.s1 NCI-CGAP-GCB1 Homo sapiens cDNA clone IMAGE:1352658 3′,

mRNA sequence.
ACCESSION AA830216
VERSION AA830216.1 GI:2903315
KEYWORDS EST.
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 407)
AUTHORS NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap.
TITLE National Cancer Institute, Cancer Genome Anatomy Project (CGAP),

Tumor Gene Index
JOURNAL Unpublished (1997)

COMMENT Contact: Robert Strausberg, Ph.D.
Email: cgapbs-r@mail.nih.gov
Tissue Procurement: Louis M. Staudt, M.D., Ph.D., David Allman,
Ph.D., Gerald Marti, M.D.
cDNA Library Preparation: M. Bento Soares, Ph.D., M. Fatima

Bonaldo, Ph.D.
cDNA Library Arrayed by: Greg Lennon, Ph.D.
DNA Sequencing by: Washington University Genome Sequencing Center
Clone distribution: NCI-CGAP clone distribution information can be

found through the I.M.A.G.E. Consortium/LLNL at:
www-bio.llnl.gov/bbrp/image/image.html
Insert Length: 1670 Std Error: 0.00
Seq primer: -40m13 fwd. ET from Amersham
High quality sequence stop: 352.

FEATURES Location/Qualifiers
source 1..407

/organism=‘‘Homo sapiens”
/db-xref=‘‘taxon:9606”
/clone=‘‘IMAGE:1352658”
/clone-lib=‘‘NCI-CGAP-GCB1”
/tissue-type=‘‘germinal center B cell”
/lab-host=‘‘DH10B”
/note=‘‘Vector: pT7T3D-Pac (Pharmacia) with a modified
polylinker; Site-1: Not I; Site-2: Eco RI; 1st strand cDNA
was prepared from human tonsillar cells enriched for
germinal center B cells by flow sorting (CD20+, IgD-),
provided by Dr. Louis M. Staudt (NCI), Dr. David Allman
(NCI) and Dr. Gerald Marti (CBER). cDNA synthesis was
primed with a Not I - oligo(dT) primer
[5′-TGTTACCAATCTGAAGTGGGAGCGGCCGCCTCATTTTTTTTTTTTTTTTTT-3′

]. Double-stranded cDNA was ligated to Eco RI adaptors
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(Pharmacia), digested with Not I and cloned into the Not I
and Eco RI sites of the modified pT7T3 vector. Library
went through one round of normalization, and was
constructed by Bento Soares and M. Fatima Bonaldo.”

BASE COUNT 131 a 67 c 67 g 142 t
ORIGIN

1 tttttttttt tttttggtta ttaaataatt tgtttattgt acggcattta caaagaaaac
61 agacaatgcc ctcagtagaa agaataaaaa tgtatttagg gctttatttt taactgacag

121 caaatagaaa tcctttagtg agatcgtggc aatttgacag tattataatt aagctcaata
181 aaggtacatg gggtacctgg aagatcaaga tctacagctg cctatttcca catctttcaa
241 tccatctggc tccttaaata ggggaaaaag cccttatttg gtggagaagc atttccaaaa
301 tgaagttaca ggttctatta aaacttactg tcacatcaac tgttaaaata gggccttttg
361 tgttttgtta tttcacctta atatcaccag aattcctgta attccac

//

EXAMPLE 2.3 GENBANK ENTRY FOR AA830216

The sequence with accession number AA830216 that appears in Example 2.1 can be
found in the GenBank and EMBL databases. Box 2.1 contains the GenBank entry for
that sequence; this is an EST sequence that was submitted to the database on 18th
March 1998. The entry contains a wealth of information about the sequence and its
authorship. However, it does not include information about the gene from which the
EST derives – information that is included in Table 2.1. This information is not in the
primary database and is only available through secondary databases.

EXAMPLE 2.4 EMBL ENTRY FOR AJ313384

The EMBL entry with accession number AJ313384 for the aspartic proteinase gene
from Theobroma cacao (the chocolate tree) is shown in Box 2.2. This entry has similar
information to the GenBank entry but with a different file format.

Primary sequence databases are the first port of call when querying a sequence
in order to obtain information about it. However, there are two reasons why primary
sequence databases are not sufficient for microarray design and annotation.

First, they do not contain meta-information. In Example 2.3, although we could
identify the sequence on the array, the primary sequence database does not include
information about the gene from which this EST derived.

Second, the primary sequence databases contain too many sequences for array
design. When designing an array, we would want the database to be able to provide a
list of genes in which each gene that will appear on the array will appear once in the
list. There are two reasons why primary sequence databases cannot provide this:

� Redundancy. Each gene can be represented several times in the database (e.g.,
if it were submitted by different research groups who have sequenced it).

� Replication. Each gene sequence may be in the database in several forms (e.g.,
as a gene sequence, as genomic sequence and as ESTs).
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BOX 2.2 EMBL Entry for AJ313384

The EMBL entry for sequence with accession number AJ313384, Theobroma cacaomRNA for aspartic proteinase.
The EMBL database contains the same type of information as GenBank. However, the file format has a two-letter
identifier at the beginning of each line to state what type of information is in that line.

ID TCA313384 standard; RNA; PLN; 1784 BP.
XX
AC AJ313384;
XX
SV AJ313384.1
XX
DT 25-JUN-2002 (Rel. 72, Created)
DT 25-JUN-2002 (Rel. 72, Last updated, Version 1)
XX
DE Theobroma cacao mRNA for aspartic proteinase (ap1 gene)
XX
KW ap1 gene; aspartic proteinase.
XX
OS Theobroma cacao (cacao)
OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
OC eurosids II; Malvales; Malvaceae; Byttnerioideae; Theobroma.
XX
RN [1]
RP 1-1784
RA Laloi M.;
RT ;
RL Submitted (25-JUN-2001) to the EMBL/GenBank/DDBJ databases.
RL Laloi M., Plant Science, Centre de Recherche Nestle, 101, avenue Gustave
RL Eiffel, Notre Dame d’Oe, BP 9716,, 37097 Tours cedex 2, FRANCE.
XX
RN [2]
RA Laloi M., McCarthy J., Morandi O., Gysler C., Bucheli P.;
RT ‘‘Molecular characterisation of aspartic endoproteinases TcAP1 and TcAP2
RT from Theobroma cacao seeds”;
RL Unpublished.
XX
DR GOA; Q8L6A9; Q8L6A9.
DR SPTREMBL; Q8L6A9; Q8L6A9.
XX
FH Key Location/Qualifiers
FH
FT source 1..1784
FT /db-xref=‘‘taxon:3641”
FT /organism=‘‘Theobroma cacao”
FT CDS 63..1607
FT /db-xref=‘‘GOA:Q8L6A9”
FT /db-xref=‘‘SPTREMBL:Q8L6A9”
FT /gene=‘‘ap1”
FT /product=‘‘aspartic proteinase”
FT /function=‘‘endoprotease”
FT /protein-id=‘‘CAC86003.1”
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FT /translation=‘‘MGRIVKTTTVTLFLCLLLFPIVFSISNERLVRIGLKKRKFDQNYR
FT LAAHLDSKEREAFRASLKKYRLQGNLQESEDIDIVALKNYLDAQYFGEIGIGTPPQNFT
FT VIFDTGSSNLWVPSSKCYFSIACYLHSRYKSSRSSTYKANGKPADIQYGTGAISGFFSE
FT DNVQVGDLVVKNQEFIEATREPSITFLVAKFDGILGLGFQEISVGNAVPVWYNMVNQGL
FT VKEPVFSFWFNRDPEDDIGGEVVFGGMDPKHFKGDHTYVPITRKGYWQFDMGDVLIGNQ
FT TTGLCAGGCSAIADSGTSLITGPTAIIAQVNHAIGASGVVSQECKTVVSQYGETIIDML
FT LSKDQPLKICSQIGLCTFDGTRGVSTGIESVVHENVGKATGDLHDAMCSTCEMTVIWMQ
FT NQLKQNQTQERILEYINELCDRLPSPMGESAVDCSSLSTMPNVSFTIGGKIFELSPEQY
FT VLKVGEGDVAQCLSGFTALDVPPPRGPLWILGDVFMGQFHTVFDYGNLQVGFAEAA”
XX
SQ Sequence 1784 BP; 482 A; 326 C; 428 G; 548 T; 0 other;

tctgctcagc ttttcttgtc gaaatcatca ctaaaaccat ttgcggactt gcagttatca 60
gaatggggag aatagtcaaa actactacag tcactctttt tctttgtctt cttctgtttc 120
ctatcgtatt ttccatatcc aatgagagat tggtcagaat tggactgaaa aagagaaagt 180
tcgatcaaaa ctatcggttg gctgcccacc ttgattccaa ggagagagag gcatttagag 240
cttctcttaa aaagtatcgt cttcaaggga acttacaaga gtctgaggac attgatattg 300
tggcactaaa gaactacttg gatgctcagt actttggtga gattggtatt ggcacacctc 360
cacagaactt cactgtgatt tttgacactg gtagttctaa tttgtgggtc ccttcatcta 420
agtgctattt ctcgatagct tgctatctcc attcaagata taaatcaagc cgttcaagca 480
cctacaaggc taatggtaaa ccagccgata tccaatacgg gactggagct atttctggat 540
tctttagtga ggacaatgta caagttggtg atcttgtagt taaaaatcag gaatttatcg 600
aggcaacaag ggagcccagc ataacatttt tggtggccaa gtttgatggg atacttggac 660
ttggatttca agagatttcg gttggaaatg ctgtgcctgt gtggtacaat atggtcaatc 720
aaggtcttgt taaggaacct gttttctcat tttggtttaa ccgcgatcct gaggatgata 780
taggtgggga agttgttttt ggtggaatgg atccaaaaca tttcaagggg gatcacactt 840
acgttcctat aacgcggaaa ggatactggc agtttgatat gggtgatgtc ctgattggta 900
accaaacaac tggactttgt gctggtggct gcagtgcaat tgctgattct gggacttcct 960
tgataaccgg tcctacggct attattgctc aagtcaatca tgctattgga gcatcagggg 1020
ttgtaagtca agaatgcaag actgtagttt cacagtatgg agagacaata attgatatgc 1080
ttttatctaa ggaccaacca ctgaaaattt gctcacaaat aggtttgtgc acatttgatg 1140
gaactcgagg tgtaagtacg gggattgaaa gtgttgtgca tgagaatgtt gggaaagcca 1200
ctggtgattt gcatgatgca atgtgttcta cttgtgagat gacagttata tggatgcaaa 1260
accagcttaa gcagaaccag acacaggagc gtatacttga gtacatcaat gagctctgtg 1320
atcggttgcc tagtccaatg ggagaatcag ctgttgattg tagcagtcta tctaccatgc 1380
ctaatgtctc gttcacaatt ggtggaaaga tatttgagct cagccccgag cagtatgtcc 1440
tgaaagtggg tgagggagat gtagctcaat gcctcagtgg attcactgct ctggatgtgc 1500
cacctcctcg tggacctctc tggatcttgg gcgacgtctt tatgggccag ttccatacag 1560
tatttgacta tggcaacctg caagttggat ttgccgaggc tgcataagtg aaactttctg 1620
cttttataaa caacttcatg ttatgcagtg ctagtagtac ccttagaact gtggggatta 1680
agtatcaaat gataattgca tgtaaatatc tatgcaaaca tgatctgtga tcttcactgg 1740
atcgttgagt gtgatgcact ttgtttaaga atttcatgtg atcc 1784

//

So although primary sequence databases are used for annotating sequences that
appear on arrays, they are not used for array design. This is the domain of secondary
sequence databases.

SECTION 2.3 SECONDARY SEQUENCE DATABASES

In this section we describe the three secondary sequence databases that are com-
monly used for microarray design: UniGene, the TIGR Gene Indices and RefSeq.
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Figure 2.3: Example UniGene cluster. The first cluster in the UniGene database, Hs.2, is the gene
Homo sapiens NAT2. The cluster has 4 mRNA sequences (shown in black) and 18 EST sequences (shown
in grey). The gene itself is 1,276 nucleotides long; two of the mRNAs are that length, and two are slightly
shorter. The 18 ESTs cover the full length of the gene, but tend to be found at the 5′ and 3′ ends of
the gene. This example is a known gene and so it is straightforward to assign the ESTs to the cluster.
Many clusters do not contain mRNAs and so are assembled as collections of overlapping ESTs without
a reference mRNA.

UniGene

UniGene is the database with the greatest historical use for selecting sequences for
microarrays. It is an attempt to partition GenBank sequences into clusters, each of
which is intended to represent a unique gene. The clusters themselves may contain
both mRNA sequences and ESTs, so that they represent both known genes and puta-
tive genes based on expressed material that has been sequenced.

The clusters are built by comparing all mRNA and EST sequences in GenBank
and assigning overlapping sequences to the same cluster (Figure 2.3). In clusters that
contain full-length mRNAs, the task is straightforward, because all ESTs deriving from
the gene will align with the mRNAs. However, many clusters in UniGene contain
only ESTs; the algorithms by which UniGene is built assemble the clusters out of
overlapping ESTs in order to produce a picture of the gene from which the ESTs have
putatively derived.

UniGene is available for a range of species (Table 2.2). Although (in December
2002) there were 20 species in the database, there is only broad coverage of the
main research species. The human database has approximately 110,000 clusters
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TABLE 2.2: Unigene Species

Scientific Name Common Name Number of Clusters

Animals
Anopholes gambiae Mosquito 2,584
Bos taurus Cow 10,765
Caenorhabditis elegans Worm 20,401
Ciona intestinalus Sea Squirt 14,262
Danio rerio Zebrafish 15,968
Drosophila melanogaster Fruit Fly 14,660
Homo sapiens Human 115,523
Mus musculus Mouse 87,543
Rattus norvegicus Rat 63,430
Sus scrofa Pig 14,321
Xenopus laevis Frog 19,441

Plants
Arabidopsis thanalia Thale Cress 27,159
Chlamydomonas reinhardtii Green Algae 6,582
Glycine max Soya 8,772
Hordeum vulgare Barley 7,933
Lycopersicon esculentum Tomato 3,737
Medicago truncatula Barrel Medic 5,828
Oryza sativa Rice 16,914
Triticum aestivum Wheat 22,188
Zea mays Maize 12,624

Note: The species represented in UniGene with number of clusters as of 31st December 2002. Although
there are 13 species in the database, UniGene is centered on the 4 main research species: human,
mouse, rat and cress. The other species in the database have patchy coverage and are better represen-
ted in other databases, such as the TIGR Gene Indices.

(Table 2.3): each of these clusters is supposed to represent a potentially different
gene. Since current thinking is that there are approximately 30,000 genes in the hu-
man genome, it is likely that many of these clusters belong together. Of the 110,000
clusters, approximately 32,000 contain at least one mRNA and so represent known
genes.

EXAMPLE 2.5 UNIGENE ENTRY FOR CLUSTER Hs.2

The UniGene entry for the first cluster in the database, Hs.2, is shown in Box 2.3. The
entry contains a mine of information about the cluster, including species, gene name,
chromosome location, tissue distribution and sequence information. This cluster is
the human geneN-acetyltransferase2 (NAT2) and has been sequenced in liver, colon,
adenocarcinoma and hepatocellular carcinoma.

The information about tissue distribution in the database allows the user to query
UniGene to find clusters that contain sequences that have been found in a particular
tissue. Thus UniGene is an excellent resource for designing tissue-specific microarrays
for focussed research projects.

The sequence information for each cluster gives details about every sequence in
the cluster. The first mRNA sequence in Example 2.5 is a RefSeq sequence (see the
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TABLE 2.3: Human UniGene Database Statistics

(a)

Sequences Clusters

mRNA sequences 112,518 Clusters containing at least one mRNA 32,090
EST sequences 3,911,348 Clusters containing at least one EST 110,743

Clusters containing mRNAs and ESTs 27,310
Total 4,023,866 Total 115,523

(b)

Number of Sequences Number of Clusters

1 50,476
2 15,509
3–4 14,695
5–8 9,543
9–16 5,567
17–32 4,073
33–64 3,694
65–128 4,034
129–256 4,190
257–512 2,527
513–1,024 843
1,025–2,048 248
2,049–4,096 78
4,097–8,192 35
8,193–16,384 10
16,385–32,768 1

Note: Statistics forHomo sapiensUniGene build number 157, issued in October 2002. (a) The number
of sequences and clusters in the database. The majority of the sequences in the database are EST se-
quences. Approximately 32,000 clusters contain at least one mRNA and thus represent known genes.
The other 83,000 clusters contain only ESTs and thus contain less reliable but potentially novel infor-
mation. The fact that there are many more EST clusters than the number of genes thought to be in
the human genome implies that probably many of these clusters are unreliable and belong together.
(b) The distribution of the number of sequences in clusters. Approximately 50,000 clusters have only
one sequence; these are typically EST sequences that have no overlap with other EST sequences and
are likely to be the least reliable information in the database.

following discussion) and, as such, will be of high quality. The EST sequences have
Integrated Molecular Analysis of Gene Expression (IMAGE) clone IDs where they are
available; this enables the user to purchase these clones from the IMAGE Consortium.
Thus UniGene allows the user to go from a tissue-specific query to being able to
purchase clones for spotting onto a microarray.

In UniGene, different splice variants of a gene are grouped together in the same
cluster. For example, all three splice variants of the gene CNR1 (Example 2.2) are
clustered together in the cluster Hs.75110. This is a significant disadvantage with
using UniGene as a resource for microarray design.



SECTION 2.3 SECONDARY SEQUENCE DATABASES 31

BOX 2.3 UniGene Cluster Hs.2

The cluster Hs.2 as it appears on the NCBI web site. There is a wealth of information about this cluster: species,
gene names, closely related genes in other organisms, chromosome location and STS sites, tissue distribution
and sequence information. The tissue distribution gives the types of libraries from which the EST and mRNA
sequences were derived. This is very powerful information, as it allows the user to select genes that have been
seen to be expressed in particular tissues and, thus, construct tissue-specific microarrays. There are 4 mRNA
sequences and 18 EST sequences for this cluster (the relationship between them is shown in Figure 2.3). The first
mRNA sequence is a RefSeq sequence and will thus be the highest quality. There is substantial information about
the EST sequences. The clone IDs that refer to IMAGE clones allow the clones to be purchased from the IMAGE
consortium, which can then be used for spotting the sequences onto arrays.

NCBI UniGene UniGene Cluster Hs.2 Homo sapiens

NCBI UniGene UniGene Cluster Hs.2 Homo sapiens

NAT2 N-acetyltransferase 2 (arylamine N-acetyltransferase)

SEE ALSO
LocusLink: 10
OMIM: 243400
HomoloGene: Hs.2

SELECTED MODEL ORGANISM PROTEIN SIMILARITIES
organism, protein and percent identity and length of aligned region
H.sapiens: pir:B34585 - B34585 arylamine N-acetyltransferase (EC 100 % / 289 aa

2.3.1.5) 2 - human (see ProtEST )
M.musulus: sp:P50295 - ARY2-MOUSE Arylamine N-acetyltransferase 2 74 % / 289 aa

(Arylamide acetylase 2) (N-acetyltransferase type 2) (see ProtEST )
(NAT

R.norvegicus: ref:NP-446306.1 - N-acetyltransferase 2 (arylamine N- 73 % / 289 aa
acetyltransferase) [Rattus norvegicus] (see ProtEST )

E.coli: ref:NP-415980.1 - putative N-hydroxyarylamine O- 24 % / 254 aa
acetyltransferase [Escherichia coli K12] (see ProtEST )

MAPPING INFORMATION
Chromosome: 8
OMIM Gene Map: 8p22
Whitehead map: WI-7224
UniSTS entries: GDB:386004 Genomic Context: Map View
UniSTS entries: WI-7224 Genomic Context: Map View
UniSTS entries: stSG40 Genomic Context: Map View
UniSTS entries: SHGC-130680 Genomic Context: Map View

EXPRESSION INFORMATION
cDNA sources: liver ;corresponding non cancerous liver tissue ;colon ;colon,

2 pooled adenocarcinomas ;hepatocellular carcinoma
SAGE : Gene to Tag mapping

mRNA SEQUENCES (4)
NM 000015 Homo sapiens N-acetyltransferase 2 (arylamine N-acetyltransferase) P

(NAT2), mRNA
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BOX 2.3 (continued)

D90042 Human liver arylamine N-acetyltransferase (EC 2.3.1.5) gene P
D90040 Human mRNA for arylamine N-acetyltransferase (EC 2.3.1.5) P
BC015878 Homo sapiens, N-acetyltransferase 2 (arylamine N-acetyltransferase), P A

clone MGC:27492 IMAGE:4716636, mRNA, complete cds

EST SEQUENCES (18)
BG618195 cDNA clone liver 5′ read P M

IMAGE:4767316
BG569293 cDNA clone liver 5′ read P M

IMAGE:4722596
BG568400 cDNA clone liver 5′ read P M

IMAGE:4716802
BG563731 cDNA clone liver 5′ read P M

IMAGE:4712210
BG533459 cDNA clone liver 5′ read P M

IMAGE:4072143
AI792606 cDNA clone colon, 2 pooled adenocarcinomas 5′ read 1.2 kb P

IMAGE:1870937
AI733799 cDNA clone colon, 2 pooled adenocarcinomas 3′ read 1.2 kb P A

IMAGE:1870937
AI262683 cDNA clone colon, 2 pooled adenocarcinomas 3′ read 1.2 kb P A

IMAGE:1870937
BG204539 cDNA clone (no-name)
BG617259 cDNA clone liver 5′ read P

IMAGE:4734378
BG569272 cDNA clone liver 5′ read P

IMAGE:4722638
AU099534 cDNA clone HSI08034 P
BF126423 cDNA clone liver 5′ read P

IMAGE:4071536
AV658656 cDNA clone GLCFOG07 corresponding non cancerous liver 3′ read P

tissue
AV658623 cDNA clone GLCFOD10 corresponding non cancerous liver 3′ read P

tissue
AI460128 cDNA clone colon 3′ read P A

IMAGE:2151449
AV684197 cDNA clone GKCFZH06 hepatocellular carcinoma 5′ read P
BG566307 cDNA clone liver 5′ read P

IMAGE:4712733

Key to Symbols

P Has similarity to known Proteins (after translation)
A Contains a poly-Adenylation signal
M Clone is putatively CDS-complete by MGC criteria
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TABLE 2.4: Advantages and Disadvantages of UniGene

Advantages Disadvantages

� Freely available on the WWW × Restricted range of species
� Good information for human, mouse, × No consensus sequences

rat and cress × No splice variant information
� Information on both known genes and ESTs × Clusters can be unstable and change
� Tissue distribution information from build to build
� Real sequences: can get clones from IMAGE × Probably many clusters belong together
� Links well with other databases

A further consideration of UniGene is that the cluster numbers and assignments
change with each database update. Therefore, arrays made using UniGene must
have a record of the version of UniGene used, and in addition to the cluster ID, the
accession number of the sequence put on the array should also always be recorded.
If only the cluster ID is recorded, it becomes difficult to trace the sequences in new
versions of UniGene when the data are being analysed.2 The advantages and disad-
vantages of UniGene are summarised in Table 2.4.

The TIGR Gene Indices

The Gene Indices (GI) at the Institute for Genetics Research (TIGR) are a resource
that is similar in scope to UniGene. As with UniGene, the TIGR GI are arranged ac-
cording to species (Table 2.5). The TIGR GI covers more species than UniGene, with
19 animal species, 18 plant species, 13 protist species and 7 fungal species. Also, the
TIGR GI includes a greater number of sequences for most of the species that are
also represented in UniGene. For example, UniGene’s Bovine index (Build 38) con-
tains 130,311 sequences and 10,787 clusters, while TIGR’s Bovine index (Version 7.0)
contains 231,316 sequences and 26,931 clusters.

The TIGR human gene index contains a similar number of sequences to the Uni-
Gene human database (Table 2.6). However, it is arranged into approximately 180,000
clusters – substantially more than UniGene. As with UniGene, this is much greater
than the number of predicted genes in the human genome, so it is likely that this
database will change over the next few years.

Unlike UniGene, TIGR contains consensus sequences for each of the clusters. From
the perspective of designing microarrays, this has both advantages and disadvan-
tages. On the positive side, a consensus sequence is a higher quality sequence and
is therefore a better starting point for oligonucleotide design. On the negative side,
the UniGene sequences are all real clones and can be purchased from the IMAGE
Consortium for use with a spotted array.

TIGR also intends to include full information about splice variants in their database.
In December 2002, there was very limited splice variant information in the TIGR
GI, and no information on human splice variants. This will probably change in the

2 I’ve done this myself and it was painful.
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TABLE 2.5: TIGR Gene Indices Species

Animals Plants

Amblyomma variegatum 478 Arabidopsis 22,485
Brugia malayi 1,846 Barley 18,552
Catfish 1,190 Chlamydomonas reinhardtii 9,785
Cattle 26,931 Cotton 6,441
C. elegans 14,262 Ice plant 1,977
Chicken 9,425 Lettuce 7,977
C. intenstinalis 14,057 Ljaponicus 3,790
Drosphila 16,926 Maize 18,715
Honey bee 2,893 Medicago truncatula 16,086
Human 181,539 Pinus 7,732
Mosquito 10,865 Potato 11,388
Mouse 105,520 Rice 14,026
O. laptipes 5,386 Rye 1,294
Oncochocerca volvulis 915 Sorghum bicolor 11,336
Pig 17,354 Soybean 24,750
Rat 41,023 Sunflower 4,374
Schistosomamansoni 1,920 Tomato 15,211
Xenopus laevis 24,246 Wheat 24,124
Zebrafish 18,811

Fungi Protists

Aspergillus nidulans 1,750 Cryptosporidium parvum 123
Coccidioides immitis 366 Dictyostelium discoideum 6,180
Cryptococcus 2,168 Eimeria tenella 1,181
Magnaporthe grisea 1,407 Leishmania 330
Neurospora crassa 2,406 Neospora caninum 338
Saccharomyces cerevisiae 4,050 Plasmodium berghei 678
Schizosaccharomyces pombe 2,499 Plasmodium falciparum 1,917

Plasmodium yoelii 2,144
Sarcocystis neurona 663
Trypanosoma brucei 577
Trypanosoma cruzi 1,672
Toxoplasma gondii 2,481
Tetrahymena thermophila 1,166

Note: Species and number of clusters in TIGR Gene Indices as of 31st December 2002. There are 19
animal species, 18 plant species, 13 protist species and 7 fungal species, representing much broader
coverage than UniGene. The species that appear in both UniGene and TIGR have better coverage in
TIGR than UniGene.

next couple of years and, if implemented, will make the GI a powerful resource for
microarray design. The advantages and disadvantages of TIGR are summarised in
Table 2.7.

RefSeq

The third secondary database resource we describe for the construction of micro-
arrays is the NCBI’s reference sequence project, or RefSeq. The reference sequence
project aims to collect high-quality, well-annotated sequences of many types,
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TABLE 2.6: Statistics for the TIGR Human Gene Index Version 10.0

(a)

In Clusters Singletons Total

ESTs 3,708,778 467,295 4,176,073
mRNAs 95,129 5,176 100,305
Total 3,803,907 472,471 4,276,378

(b)

Number of clusters 181,539
Singleton mRNAs 5,176
Singleton ESTs 467,295
Total 654,010

(a) As with UniGene, the database contains both EST and mRNA sequences. Unlike UniGene, singleton
sequences that do not overlap with any other sequences in the database are kept separately. With the
human gene index, the number of sequences in TIGR is comparable with the number of sequences in
UniGene. (b) However, there are many more clusters in TIGR than UniGene, resulting from differences
in the algorithm. Because it is thought that there are only about 30,000 genes in the human genome,
it is possible that the TIGR clusters will change over the next few years.

including complete genomes, complete chromosomes, genomic regions, mRNAs,
other types of RNA, genome contigs and proteins.

The mRNA section of RefSeq is of particular interest for microarray design and is
available for human, mouse, fruit fly, rat and zebrafish (Table 2.8). RefSeq does not
provide a complete picture of expressed material for any of these species. For example,
as of December 2002, there are only about 19,000 RefSeq entries for humans, compared
with about 32,000 UniGene clusters containing at least one mRNA. However, the
sequences in RefSeq represent the highest possible quality mRNA sequences in the
database, and so they are used where possible as the basis for microarray and other
work.

RefSeq mRNAs are recognisable by accession numbers starting with the prefix
NM . For example, in Example 2.2, the three cannabinoid receptor splice variants are
all RefSeq genes. In Example 2.5, the first sequence in the UniGene cluster Hs.2 is also
a RefSeq sequence and would represent the best sequence to use to represent the gene
in this cluster (Box 2.3).

TABLE 2.7: Advantages and Disadvantages of TIGR

Advantages Disadvantages

� Freely available on the WWW for × Licenses required for commercial users
noncommercial users × Probably many clusters belong together

� Wide range of species × Splice variants not yet included
� Information on both known genes and ESTs
� Consensus sequences
� Future inclusion of splice variants
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TABLE 2.8: RefSeq Species and Statistics

Species Provisional Predicted Reviewed Total

Human 7,186 4,085 7,159 19,043
Mouse 9,144 4,221 83 14,099
Drosophila 7,580 6,930 1,221 16,450
Rat 4,089 106 14 4,210
Zebrafish 846 1 852

Note: Statistics for the five species currently covered by RefSeq, as of 31st December 2002. Provisional
sequences have not yet been subject to individual review. Predicted means that while there is evidence
that this is a valid locus, such as a cDNA sequence, some aspect of the record is predicted, including
possibly the protein sequence. Reviewed sequences have been individually reviewed and annotated
by staff at the NCBI and represent very high-quality sequence records.

TABLE 2.9: Advantages and Disadvantages of RefSeq

Advantages Disadvantages

� Freely available on the WWW × Limited number of species
� High-quality sequence information for × Limited coverage of genes

known genes × Does not include ESTs or predicted genes
� Inclusion of splice variants

TABLE 2.10: Ensembl Species and Statistics

Human Mouse Zebrafish Fugu Mosquito

Ensembl Gene Predictions 22,980 22,444 1,511 31,059 15,088
Genscan Gene Predictions 73,218 109,654 2,406 32,615
Gene Exons 204,094 191,290 7,524 181,098 54,788
GeneTranscripts 27,628 28,097 1,828 33,609 15,101
Base Pairs 3,342,501,203 2,726,795,854 36,330,021 332,504,233 278,253,050

Note: The Ensembl database is available for five species. Ensembl gene predictions represent known and predicted
genes for which there is experimental evidence. Genscan gene predictions include genes which have been predicted
in silico but which may not necessarily have supporting experimental evidence. Gene exons are the number of exons,
and gene transcripts represent the number of transcripts which can include multiple splice variants for the same
gene.

TABLE 2.11: Advantages and Disadvantages of Ensembl

Advantages Disadvantages

� Freely available on the WWW × Limited number of species
� Contains all sequence information from × Requires more advanced bioinformatics

genomic perspective programming skills to access at low level
� Contains known and computer-predicted genes
� Includes information on exons and splice variants
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Splice variants of genes are fully represented in RefSeq, making it a very powerful
resource for the design of arrays for known splice variants of known genes. For exam-
ple, the three splice variants of Cannabinoid Receptor 1 in Example 2.2 are all separate
RefSeq entries linked to the same locus on the human genome. The advantages and
disadvantages of RefSeq are summarised in Table 2.9.

SECTION 2.4 GENOMIC DATABASE RESOURCES

Sections 2.2 and 2.3 looked at sequences that could be used for microarray experi-
ments from a gene-centric perspective. The databases in those sections start at the
low level of mRNA and EST sequences, which are kept in primary databases and are
assembled and annotated into higher level secondary databases. This section looks
at resources that can be used for choosing sequences for microarrays from a genomic
perspective: to start with the whole genome and then choose gene sequences for
the array based on the annotation of that genome. For small organisms, such as bac-
teria and yeast, this is the most natural approach. But even for complex organisms
such as humans, there are resources that allow this approach to microarray design
and annotation.

Ensembl

Ensembl is a joint project between the European Bioinformatics Institute (EBI) and
the Wellcome Trust Sanger Institute to provide complete annotation of eukary-
otic genomes. Originally established to cover the human genome, at the time of
this writing it also included coverage of mouse, rat, zebrafish, fugu and mosquito
(Table 2.10).

The reason for setting up Ensembl is to provide a single, seamless resource for
querying and mining completed genomes, such as the human genome. When a
genome is sequenced, it is sequenced in small chunks. Ensembl assembles these
chunks into chromosome sequences so that each chromosome appears as a single
“virtual” sequence, also known as the Golden Path.

The real power of Ensembl as a resource for microarray design is in its annotation.
The Ensembl project links all available data about human sequences, so that infor-
mation on known genes, known proteins and ESTs are included as part of the genome
annotation. It also provides annotation on the results of gene prediction algorithms.
This is important for microarray design because it allows oligonucleotide probes to be
designed for predicted genes and exons in addition to known expressed sequences.
The advantages and disadvantages of Ensembl are summarised in Table 2.11.

EXAMPLE 2.6 ENSEMBL ENTRY FOR ENSG00000118432

Cannabinoid Receptor 1 has Ensembl accession number ENSG00000118432. The En-
sembl entry has two predicted transcripts (Box 2.4) and references to the three RefSeq
entries for this gene (Example 2.3).
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BOX 2.4 Ensembl Entry for Cannabinoid Receptor 1

The text entry for the gene with ENSG00000118432. In the Ensembl database, there are two predicted transcripts,
which do not correspond exactly to the three splice variants in RefSeq. However, lower in the entry there are
references to all three RefSeq transcripts, as well as sequences in the EMBL database, GO (Gene Ontologies: see
Chapter 10), HUGO, LocusLink, MIM and protein identifiers. The HTML link takes the user to a page showing
graphical information about the gene, including the exon structure of the gene.

EnsEMBL gene ENSG00000118432 has 2 transcripts: ENST00000303726,
ENST00000237199
CANNABINOID RECEPTOR 1 (CB1) (CB-R) (CANN6). [Source:SWISSPROT;Acc:P21554]
The gene has the following external identifiers mapped to it:
EMBL: U73304, X54937, AF107262, X81120, X81121
GO: GO:0005887, GO:0004949, GO:0007187, GO:0007610
HUGO: CNR1, 2159
LocusLink: 1268
MIM: 114610
protein-id: AAD34320, CAA57018, AAB18200, CAA57019, CAA38699
RefSeq: NM-016083, NM-001840, NM-033181
SWISSPROT: CB1R-HUMAN, P21554
http://www.ensembl.org:80/Homo-sapiens/geneview?gene=ENSG00000118432

EXAMPLE 2.7 ENSEMBL REPORT FOR ENSG00000146263

This is an Ensembl gene prediction located in a 100-Mb region on chromosome 6.
A portion of the Ensembl report that would appear on the Ensembl web site for this
predicted gene is shown in Box 2.5. The predicted genes in Ensembl could be included
in an exploratory microarray experiment or as part of an attempt to confirm these
sequences as genes and ascertain some understanding of their possible function.

Microbial Genomes

Microbial genomes are small – typically with genomes between 2 and 5 megabases,
and between 2,000 and 5,000 genes. This makes microbes very attractive organisms
for microarray analysis: it is possible to place probes for every gene in the organism
on a single array and perform powerful and exciting experiments.

Microbial genomes are readily accessible from two databases: GenBank and the
TIGR Comprehensive Microbial Resource (CMR). In December 2002, there were 102
genomes in GenBank and 96 genomes in TIGR. Data are exchanged between the
two databases: most genomes are in both databases, but the genomes that are se-
quenced at TIGR are published in the TIGR database before they reach GenBank, and
genomes sequenced elsewhere are published in GenBank before they reach TIGR. Of
the 102 genomes in GenBank, there are 85 different organisms, with 12 organisms
having multiple strains in the database. For example, there are two strains of Yersinia
pestis (the bacterium responsible for the Black Death in the Middle Ages): CO92 and
KIM.
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BOX 2.5 Ensembl Report for Gene ENSG00000146263

Part of the Ensembl report for a predicted gene. The gene is predicted using the exon prediction programs Genscan
and Genewise on the human chromosome sequence. The predicted exons are then compared with EST, cDNA and
protein databases and exons with similar sequences in these databases are confirmed predictions. This particular
gene consists of 11 exons and is 1,692 bases long. An exploratory microarray experiment could include probes
specific to this gene.

Ensembl gene ID ENSG00000146263
Genomic Location View gene in genomic location: 97462884 - 97502767 bp (97.5 Mb)

on chromosome 6
This gene is located in sequence: AL023656.8.1.112361

Description No description
Prediction Method This gene was predicted by the Ensembl analysis pipeline from

either a GeneWise or Genscan prediction followed by confirmation
of the exons by comparisons to protein, cDNA and EST databases.

Predicted 1: ENST00000275053 [View supporting evidence] [View protein
Transcripts information]
InterPro IPR001092 Basic helix-loop-helix dimerization domain bHLH [View

other Ensembl genes with this domain]
Protein Family ENSF00000015640 : UNKNOWN

This cluster contains 1 Ensembl gene member(s)
Export Data Export gene data in EMBL, GenBank or FASTA
Homology Matches No homologues identified for this gene.

Transcript 1: ENST00000275053
Transcript cDNA Sequence Total length: 1692 bp No. Exons: 11
>ENST00000275053
AGTATGCATCAACAATTGTGTCAGGAACTTCAAAGGGACAATGTGGACCT
ATTTGTACAGTCTTCATTATCGGCTAAAGAGCGCCACCTTGCTGCAGTTG
CCAGTGCACTGTGGAGACATTTCTTTTCATTTTTGAAGAGTCAGAGAATG
TCACAGGTAGTGCCTTTCTCACAACTTGCGGATGCAGCTGCAGACTTTAC
TTTGCTAGCAATGGACATGCCAAGCACAGCTCCATCAGATTTTCAGCCTC
AGCCAGTTATATCAATTATTCAACTTTTTGGTTGGGATGATATCATCTGC
CCTCAAGTTGTAGCAAGATATTTAAGTCATGTCCTACAAAATAGCACATT
ATGTGAAGCACTTTCTCATTCAGGCTATGTATCTTTTCAAGCCTTAACCG
TAAGATCATGGATTCGTTGTGTTTTGCAAATGTATATTAAAAACCTCTCT
GGGCCTGATGATTTGCTCATAGATAAAAATCTGGAAGAGGCAGTTGAAAA
AGAGTACATGAAACAGTTGGTCAAACTGACAAGATTACTATTTAATCTCT
CAGAAGTAAAGAGTATTTTCTCAAAGGCCCAAGTTGAATATTTATCCATC
TCAGAAGACCCTAAAAAAGCACTTGTTCGATTCTTTGAGGCTGTTGGTGT
AACTTACGGGAACGTCCAGACACTTTCTGATAAATCTGCCATGGTCACAA
AGTCCTTGGAATACCTTGGTGAAGTATTAAAATATATTAAGCCTTATTTG
GGAAAAAAAGTTTTCAGTGCAGGGCTGCAGCTGACTTATGGAATGATGGG
AATTCTTGTGAAATCATGGGCACAAATCTTTGCCACTTCTAAAGCCCAAA
AATTACTATTCCGGATCATAGATTGTTTACTGCTGCCACATGCAGTATTA
CAGCAAGAGAAGGAACTGCCTGCACCTATGTTGTCAGCAATTCAGAAAAG
TCTTCCTTTGTATCTCCAGGGCATGTGTATCGTGTGTTGTCAATCTCAAA
ATCCGAATGCCTATTTGAATCAATTGCTAGGGAATGTTATTGAGCAGTAT
ATTGGGCGATTTCTTCCAGCTTCACCATATGTTTCAGATCTTGGACAACA
TCCTGTTTTGCTGGCATTGAGAAACACAGCCACTATTCCACCAATATCAT
CTCTAAAGAAATGCATTGTGCAAGTCATAAGGAAATCCTACCTTGAGTAT
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BOX 2.5 (continued)

AAGGGGTCCTCACCTCCTCCTCGCTTAGCATCCATTCTGGCCTTCATCCT
CCAACTCTTCAAGGAAACTAACACAGACATTTATGAAGTTGAACTACTCC
TCCCTGGCATTTTAAAATGCTTGGTGTTAGTCAGTGAACCACAAGTTAAA
AGGCTGGCCACAGAGAACCTGCAATACATGGTAAAAGCCTGCCAAGTGGG
GTCAGAAGAAGAACCTTCCTCCCAGCTGACTTCTGTGTTTAGGCAGTTTA
TCCAGGATTATGGTATGAGGTACTATTACCAGGTTTACAGCATTTTAGAA
ACAGTAGCAACATTGGACCAGCAGGTTGTCATCCACTTGATTTCTACCCT
TACTCAGTCTCTGAAGGATTCAGAGCAGAAATGGGGCCTTGGCAGGAATA
TAGCACAAAGGGAAGCCTATAGCAAACTTTTGTCTCACCTTGGACAGATG
GGACAAGATGAGATGCAGAGACTGGAAAATGATAATACTTAA
//

The two databases have different annotation for the same genomes. As a result, an
array built from the sequences downloaded from each of these data resources may
have slightly different genes.

EXAMPLE 2.8 GENBANK AND TIGR ANNOTATIONS OF E. COLI K12

The GenBank annotation of E. coli strain K12 has accession number U00096. This
is a GenBank format file (see Box 2.2) for the whole genome of this organism. It has
4,639,221 bases and 4,403 genes [including predicted Open Reading Frames (ORFs)].
The TIGR annotation of this genome has 5,295 genes (having more predicted ORFs).
The details of the first few genes of the GenBank annotation of this genome are shown
in Table 2.12. Because of the small number of genes in the genome, it is straightforward
to produce an array with approximately 10,000 features containing every gene or ORF
in duplicate.

Yeast

Baker’s yeast, Saccharomyces cerevisiae, is a eukaryotic organism with a short genome
making it highly tractable for microarray experiments. Because of this, yeast was used

TABLE 2.12: E. Coli K12 Genes

Start Finish Strand Identifier Name Gene Product

190 255 + b0001 thrL thr operon leader peptide
337 2799 + b0002 thrA aspartokinase I, homoserine dehydrogenase I

2801 3733 + b0003 thrB homoserine kinase
3734 5020 + b0004 thrC threonine synthase
5234 5530 + b0005 ORF, hypothetical protein
5683 6459 − b0006 yaaA ORF, hypothetical protein

Note: The first six genes in the GenBank annotation of E. coli strain K12. The GenBank file gives the start and finish
positions in the genome, the strand on which the gene lies, a standard gene identifier and a gene name if it exists. The
annotation includes both known and hypothetical genes. Bacterial genomes are very efficient and almost all codons
are used. For example, the first codon for the gene thrC is immediately after the last codon for thrB.
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TABLE 2.13: Yeast Genes from the Saccharomyces Genome Database

ORF Gene SGDID GO Aspect GO Term GOID

YAL001C TFC3 3573 transcription initiation RNA polymerase III YAL001C
from Pol III promoter transcription factor

YAL002W VPS8 3531 not yet annotated molecular function unknown YAL002W
YAL003W EFB1 987 translational elongation translation elongation factor YAL003W
YAL004W 648 biological process unknown molecular function unknown YAL004W
YAL005C SSA1 1929 protein folding chaperone YAL005C

Note: Five genes with their annotation from the Saccharomyces Genome Database. The first column is the yeast
ORF name; the second column the common gene name; the third column is a unique ID in the SGD. The GO Aspect
and GO Term columns are gene ontology terms describing the process and function of the gene, respectively (see
Section 11.4 for more information on ontologies). The GOID in the final column is a gene ontology ID for the gene.

in the first major microarray paper of DeRisi, Iyer and Brown (1997); on their arrays,
they had 6,102 yeast ORFs representing all known and predicted ORFs. Yeast remains a
commonly used organism for microarray experiments, so arrays are readily available
from a number of academic and commercial sources. The Saccharomyces genome
database (SGD) at Stanford University is an excellent resource for navigating the yeast
genome.

The yeast genome is arranged into 16 chromosomes. The strain whose sequence
appears in the SGD is the s288c strain and has 12,057,495 bases. There are 4,988
registered genes in yeast, and 6,267 ORFs, including predicted ORFs, in the SGD. Both
the registered genes and the ORFs can be viewed and downloaded from the SGD web
site. Table 2.13 gives information for five of the genes in the database.

KEY POINTS SUMMARY

� Primary gene sequence databases (GenBank, EMBL, DDBJ) hold all published se-
quences and are the basis of all other databases.

� Secondary gene sequence databases (UniGene, TIGR GI, RefSeq) are excellent re-
sources for designing DNA microarrays.

� Genomic databases (Ensembl, TIGR CMR, SGD) are excellent resources for design-
ing arrays for small organisms and can also be used for more complex organisms.

INTERNET RESOURCES

GenBank:
http://www.ncbi.nlm.nih.gov/
EMBL:
http://www.ebi.ac.uk/embl/index.html
DDBJ:
http://www.ddbj.nig.ac.jp/
UniGene:
http://www.ncbi.nlm.nih.gov/UniGene/



42 SEQUENCE DATABASES FOR MICROARRAYS

TIGR Gene Indices:
http://www.tigr.org/tdb/tgi/
RefSeq:
http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
Ensembl:
http://www.ensembl.org
TIGR Comprehensive Microbial Resource:
http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl
Saccharomyces Genome Database:
http://genome-www.stanford.edu/Saccharomyces/
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CHAPTER THREE

Computer Design of Oligonucleotide Probes

SECTION 3.1 INTRODUCTION

An oligonucleotide probe is a short piece of single-stranded DNA complementary to
the target gene whose expression is measured on the microarray by that probe. In
most microarray applications, oligonucleotide probes are between 20 and 60 bases
long. The probes are either spotted onto the array or synthesised in situ, depending
on the microarray platform (Chapter 1).

Usually, oligonucleotide probes for microarrays are designed within several hun-
dred bases of the 3′ end of the target gene sequence. So for a fixed oligonucleotide
length, there are several hundred potential oligonucleotides, one for each possible
starting base. Some of these oligonucleotides work better than others as probes on
a microarray. This chapter describes methods for the computer selection of good
oligonucleotide probes.

What Makes a Good Oligonucleotide Probe?

Good oligonucleotide probes have three properties: they are sensitive, specific and
isothermal.

A sensitive probe is one that returns a strong signal when the complementary target
is present in the sample. There are two factors that determine the sensitivity of a probe:

� The probe does not have internal secondary structure or bind to other identical
probes on the array.

� The probe is able to access its complementary sequence in the target, which
could potentially be unavailable as a result of secondary structure in the target.

A specific probe is one that returns a weak signal when the complementary target
is absent from the sample; i.e., it does not cross-hybridise. There are two factors that
determine the specificity of a probe:

� Cross-hybridization to other targets as a result of Watson–Crick base-pairing
� Non-specific binding to the probe; e.g., as a result of G-quartets

Isothermal probes behave similarly under the hybridization conditions of the mi-
croarray experiment: temperature, salt concentrations and formamide concentration.
Usually, we demand that all the probe–target duplexes on the array have similar melt-
ing temperatures.

43
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Select gene for oligonucleotide design 

Select 3’ portion of gene

Mask repeat sequences

Generate all possible oligos of desired length
that do not overlap repeat regions

Check for sequence homologies and remove
bad probes

Check melting temperature of probes and
remove probes outside desired range

Check secondary structure of probes and
remove bad probes

Select two or three of the remaining probes
for use on the microarray

Figure 3.1: Oligonucleotide probe design methodology. The design methodology that we follow in
this chapter. At each step, we filter more of the probes until we are left with a subset of probes that we
can use on the array. It is not necessary to perform the steps in this order.

Of the five factors listed that determine these three properties, it is straightfor-
ward to use computer algorithms to predict the melting temperature, any internal
secondary structure of a probe and the similarity of a probe to other targets. The other
factors – secondary structure in the target, and non-specific interactions – are more
difficult to predict in silico and will not be discussed in this chapter.

The remainder of this chapter will follow the structure of most probe design algo-
rithms and focus on the prediction of these properties of oligonucleotide probes. It is
arranged into the following four sections:

Section 3.2: The Filtering of Low-Complexity Sequence, discusses the identification
of repeat regions in targets; probes designed against repeat regions would be
likely to cross-hybridise and should be avoided.

Section 3.3: Prediction of Cross-Hybridisation to Related Genes, looks at the use
of homology search algorithms to rule out probes that might also hybridise to
genes with similar sequence.

Section 3.4: The Thermodynamics of Nucleic Acid Duplexes and the Prediction of
Melting Temperature, describes the base-stacking model for the prediction of
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thermodynamic properties of nucleic acid duplexes and the use of this model
for determining duplex free energies and melting temperatures.

Section 3.5: Probe Secondary Structure, describes software that can be used to rule
out probes that will self-hybridise and thus not form duplexes with the target.

In these sections, we follow the probe design process for a single gene, as a concrete
example of how to select oligonucleotides for a DNA microarray (Figure 3.1).

SECTION 3.2 THE FILTERING OF LOW-COMPLEXITY SEQUENCE

EXAMPLE 3.1 LOW-COMPLEXITY PROBES

Throughout this chapter, we shall use the geneHomo sapiens alcohol dehydrogenase
beta2 subunit (ADH2) as an example gene for probe design. The sequence we choose
has accession number AF153821 and, at the time of writing this book, is the unique
UniGene sequence for cluster Hs.4 (Box 3.1a). Probes are usually designed to be com-
plementary to the 3′ end of genes because of the widespread use of poly-T primers to
generate the labelled cDNA target.

The following are two 30mer probes that are complementary to the ADH2 sequence.
Are they good probes?

(a) TTTTTAATTTTTTTTTTTTTAAGCAGTAAT
(b) TATATATATATATATATATATATACAATCA

It should be clear that these are not good probes: (a) is complementary to the
polyadenylation site at the 3′ end of the mRNA and so contains a large run of Ts
that would potentially cross-hybridise to a wide range of other targets; (b) contains a
TATA repeat that will also cross-hybridise to a wide range of targets.

Both these probes contain examples of what we call low-complexity sequence,
which is a term used to describe repetitive sequence. We do not want probes that
contain low-complexity sequence because these are likely to cross-hybridise to other
targets.

RepeatMasker

It is straightforward to write computer programs to detect this type of repetitive se-
quence. We will describe software called RepeatMasker that detects all types of repeat
sequences: low-complexity regions such as in Example 3.1, and longer genomic re-
peats such as ALU and LINE sequences.

There are two ways in which RepeatMasker can be accessed. It is available over
the Internet via a web interface. This allows the user to submit sequences that will be
filtered for low-complexity regions and other repeats. It is also available as a command-
line Unix program that can be used in a high-throughput method using simple scripts.
In Table 3.1, we show the advantages and disdvantages of using software such as
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BOX 3.1 RepeatMasker on the ADH2 Sequence

(a) ADH2 Gene Sequence: 600 bases from the 3′ end of Homo sapiens alcohol dehydrogenase beta2 subunit
(ADH2). Probes are usually designed at the 3′ end of sequences because of the use of poly-T priming to generate
the cDNA target.

>AF153821 600 bases 3′ Homo sapiens alcohol dehydrogenase beta2 subunit (ADH2)
ATATAGTTAAGTTGATTGTATATATATATATATATATATATGTATTCCAG
TGTAGAAAGTATTGGCTGGGTCTGTAATCAAGTATTCCACAGAAGTGCCT
TCATAGGTGCTGAAACAGGATTATGAGAGTGACAGACACAGGACTGAAGA
CAGGGAGAAAATGTGCATGGCTGTGAGAATATATTGCTTTGATTCTTTGA
CTTCTCATGATATATGAAAACAAATAAAGTGGGGGGGGGTGACTTCAATA
ATATCACGAACATATTTAAAATGAAATTCTGAGCATGGAGAAAAATTTCA
AATTCTGGTATAAACAAATAATCTAAAAATATAGATAAGGAAAAAATGTT
TTCATTTTTTTGGTCATATTGATTTGGGTCATATATGATTGACCAAAAAA
AAAGATATTTCTAAAATCCTGGTGCTTTTTCATTTAAAAATAGACAACCA
AAGAGGAAAATGAACAATGATGGAAATTCGTGGAAGAGGAAACTAAAATG
GCAAAATAGCATATTAAATGGCACTGAGCCTTGGTGTGATCAAAAAAAAA
AAAATAAAGCAAAATGAGATATTACTGCTTAAAAAAAAAAAAATTAAAAA

(b) ADH2 Masked Sequence: Results of running RepeatMasker on the 600-base sequence for ADH2 shown in Fig-
ure 3.1. Two repetitive regions have been replaced with Ns: the TATA repeat on the first line and the polyadenylation
site on the last line. RepeatMasker has not masked shorter runs of repeats, such as the poly-G on the fifth line, or
the poly-A at the end of the penultimate line and beginning of the bottom line.

>AF153821 600 bases 3′ Homo sapiens alcohol dehydrogenase beta2 subunit
(ADH2) Masked Sequence
ATATAGTTAAGTTGATTGNNNNNNNNNNNNNNNNNNNNNNNNNNNTCCAG
TGTAGAAAGTATTGGCTGGGTCTGTAATCAAGTATTCCACAGAAGTGCCT
TCATAGGTGCTGAAACAGGATTATGAGAGTGACAGACACAGGACTGAAGA
CAGGGAGAAAATGTGCATGGCTGTGAGAATATATTGCTTTGATTCTTTGA
CTTCTCATGATATATGAAAACAAATAAAGTGGGGGGGGGTGACTTCAATA
ATATCACGAACATATTTAAAATGAAATTCTGAGCATGGAGAAAAATTTCA
AATTCTGGTATAAACAAATAATCTAAAAATATAGATAAGGAAAAAATGTT
TTCATTTTTTTGGTCATATTGATTTGGGTCATATATGATTGACCAAAAAA
AAAGATATTTCTAAAATCCTGGTGCTTTTTCATTTAAAAATAGACAACCA
AAGAGGAAAATGAACAATGATGGAAATTCGTGGAAGAGGAAACTAAAATG
GCAAAATAGCATATTAAATGGCACTGAGCCTTGGTGTGATCAAAAAAAAA
AAAATAAAGCAAAATGAGATATTACTGCNNNNNNNNNNNNNNNNNNNNNN

RepeatMasker, BLAST (Section 3.3) and mfold (Section 3.5) over the web relative to
using a local command-line program.

RepeatMasker takes a DNA (or RNA) sequence as an input and returns the same
sequence, in which the different repeats have been replaced by runs of “N”s. When
designing oligonucleotide probes for a microarray, we would avoid selecting probes
in any of the regions masked with the Ns. RepeatMasker includes a number of
options:

� The sequence to be masked can be supplied either via a file name or pasted into
a pane (if using the web interface).
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TABLE 3.1

Advantages and disadvantages of using software such as RepeatMasker, BLAST and mfold via a user
interface on the Internet as opposed to obtaining a local copy and running it as a command-line
program.

User Interface on the Internet Local Copy of Software

� Free access over the Internet
� Easy to use user interfaces
× Can only be applied to one sequence at

a time and results need to be parsed
visually

× Dependent on speed and stability of
the Internet connection and remote
server

� Good for high-throughput analysis as can
be applied to many sequences with a
simple script

� Can run in background on local server
while you do other work

× Need to obtain license agreements from
software suppliers

× Need Unix skills to install and run the
programs, and scripting skills to parse the
results

� When using the web interface, the results can be returned either via the web
or via email. Usually, with short sequences it is possible to return the results
via the web, but it is worth using email when submitting longer (e.g., genomic)
sequences.

� There are three sensitivities that can be applied. We recommend using the slow-
est setting, which gives the most robust results.

� Different species have different families of repeat sequences. RepeatMasker uses
different databases of repeat sequences for different species. At the time of this
writing, the user can select databases for primates, rodents, other mammals,
other vertebrates, Arabidopsis, grasses or Drosophila.

� There are several options to switch off masking of different types of repeats. For
the design of DNA probes, we mask all types of repeats.

EXAMPLE 3.2 REPEATMASKER ON ADH2

The 600-base-pair sequence (Box 3.1a) is submitted to the RepeatMasker server.
RepeatMasker has identified two repeat regions and replaced them with Ns (Box 3.1b):
these are both regions from which we selected the bad probes in Example 3.1. Note
that RepeatMasker has not masked shorter runs of repeats, such as the poly-G on the
fifth line, or the poly-A at the end of the penultimate line and beginning of the bottom
line; more stringent probe design algorithms might also exclude these regions. In this
example, we will not select probes for ADH2 in the regions masked by RepeatMasker.

SECTION 3.3 PREDICTION OF CROSS-HYBRIDISATION TO
RELATED GENES

Genes are related to each other. They have evolved from common ancestors, and the
majority of genes form part of closely related gene families, with sequence similarity
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between family members. For an oligonucleotide probe to be specific, it must not
hybridise to other targets, whether gene family members or unrelated genes sharing
similar sequence.

As with low-complexity sequence, it is possible to use computer algorithms to iden-
tify parts of the target sequence that show similarity to other genes. These algorithms
are called homology searches. A homology search usually takes two inputs:

1. A DNA (or protein) query sequence which, in the case of oligonucleotide probe
design, will be the potential oligonucleotide sequences.

2. A database of DNA (or protein) sequences, which would contain other target
genes that we do not want to bind to the probe we select for the array.

A homology search return sequences in the database that match either part or the
whole of the query sequence. Typically, the alignments between the query sequence
and the database hits are returned along with numerical information describing the
significance of each hit.

There are many different homology searching algorithms, each of which per-
forms different tasks in different ways. The most commonly used are called BLAST,
FASTA and Smith–Waterman alignments, but there are others also available. These
are all quite different from each other: in this section, we shall show how BLAST
can be used to identify probes that show minimum cross-hybridisation to related
probes.

BLAST is a program that is freely available to all, both via web interfaces and as an
executable program that can be downloaded for local use. It is hosted by the NCBI. The
query sequences to the BLAST program will be the potential probes for the gene target
sequence. We could also use the target sequence itself, because BLAST automatically
looks for homologies on both strands.

Great care needs to be taken when choosing the database sequences against which
to check the query sequences. Many sequence databases contain multiple entries for
the same gene. For example, a gene in GenBank may have multiple submissions to
a database from different laboratories. Also, the same sequence may be present in a
database in different forms, e.g., as an mRNA, a chromosome sequence and as a BAC
clone (see Example 3.3).

Therefore, we need to select a database in which the query sequence appears as
itself exactly once. The simplest way to ensure this is to use the same database for
checking for cross-hybridising homologies as the one used for selecting genes for the
array. For example, if we use UniGene (Section 2.3) as the database for selecting genes
to put on the array, we would also use UniGene as the database against which we
check for cross-hybridising probes.

Because we will be using a specialised BLAST database, it is impractical to perform
these searches without using a locally installed version of BLAST at the command
line. At the end of the chapter, we give the FTP site where you can download the
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BOX 3.2 BLAST on the Web

The sequence TGATTACAGACCCAGCCAATACTTTCTACA, a potential 30mer probe for ADH2, is BLASTed against
the non-redundant database on the NCBI server. We show the summary information for the top four hits,
and the first alignment.

The summary information has three columns. The first gives an accession number and description of the gene
in the database to which a homology has been found. The second is a bit score; with nucleotide sequences, this
is equal to twice the number of matched bases, so a bit score of 60 represents a 100% identity with a 30-base-
pair sequence. Finally, the E value is a measure of likelihood of seeing this alignment with random sequences.

The alignment gives further information, including the number of identities, the orientation of the alignment,
and the positions of the matching sequences in both the query and database sequence.

Of these hits, the first three are the same gene in different forms: as a BAC clone, as the gene itself, and as part
of genomic DNA. The fourth hit is the closest homology to a different gene, and spans 18 bases. We show this
18-base alignment.

Score
(bits) E Value

Sequences producing significant alignments:
gi|18072230|gb|AC097530.3| Homo sapiens BAC clone RP11-696N... 60 5e-08
gi|5002378|gb|AF153821.1|AF153821 Homo sapiens alcohol dehy... 60 5e-08
gi|9293862|dbj|AP002027.1|AP002027 Homo sapiens genomic DNA... 60 5e-08
gi|18370038|gb|AC074378.4| Homo sapiens chromosome 4 clone... 36 0.79
>gi|18370038|gb|AC074378.4| Homo sapiens chromosome 4 clone RP11-4I17,
complete sequence

Length = 154112
Score = 36.2 bits (18), Expect = 0.79
Identities = 18/18 (100%)
Strand = Plus / Plus
Query: 11 cccagccaatactttcta 28

| | | | | | | | | | | | | | | | | |
Sbjct: 4953 cccagccaatactttcta 4970

BLAST executable. In Chapter 2, we showed where you can download commonly used
sequence databases, such as UniGene, TIGR GI, RefSeq and Ensembl.

EXAMPLE 3.3 USING BLAST ON THE WEB

BLAST is available on a number of web sites. One good site is at the NCBI:

http://www.ncbi.nlm.nih.gov/BLAST/

There are a number of options for blasting nucleotides or proteins. We use BLASTN
(standard nucleotide BLAST) to check the probe sequence

TGATTACAGACCCAGCCAATACTTTCTACA

against the non-redundant database provided by the NCBI. In this example, the top
three sequences found are all the same ADH2 gene from which the 30mer probe
derives (Box 3.2). The first sequence is the gene on a BAC clone, the second sequence
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TABLE 3.2

Results of a BLAST search of 30mer oligonucleotides complementary to the 600 bases at the 3′ end
of ADH2 that do not contain repeat sequences detected by RepeatMasker. In the first column is the
position of the 5′ base of the probe sequence from the 3′ end of the target sequence. In the second
column is the oligo sequence. In the third column is the identifier of the sequence in the database
with the closest hit. In the fourth column is the bit score of that hit. In the majority of these cases, the
bit score will be twice the length of the maximum alignment, so a bit score of 30 means that there is
100% identity with a 15-base sequence. The E value is a measure of likelihood of seeing that bit score
by random chance.

Observe that there are no BLAST results for the sequences at positions 41, 191 and 351. This is
because BLAST also performs a low-complexity filter and has not processed those sequences because
of the poly-T and poly-C present in the central portions of them, respectively. We will therefore not
select these probes for use on a microarray.

In the final column, we have selected those probes with minimum sequence homology for the next
phase of the probe selection. We have used a threshold of E value greater than 1.0, or bit score less
than or equal to 30. In other applications, for example, when using longer probes, different thresholds
would be appropriate.

Bit
3′ Oligo Score E Val Use?

31 ATCTCATTTTGCTTTATTTTTTTTTTTTTG gnl|UG|Hs#S1607371 28 4.3 �
41 GCTTTATTTTTTTTTTTTTGATCACACCAA
51 TTTTTTTTTGATCACACCAAGGCTCAGTGC gnl|UG|Hs#S2139687 30 1.1 �
61 ATCACACCAAGGCTCAGTGCCATTTAATAT gnl|UG|Hs#S848092 34 .07
71 GGCTCAGTGCCATTTAATATGCTATTTTGC gnl|UG|Hs#S1056596 36 .018
81 CATTTAATATGCTATTTTGCCATTTTAGTT gnl|UG|Hs#S1056596 40 .001
91 GCTATTTTGCCATTTTAGTTTCCTCTTCCA gnl|UG|Hs#S2826142 32 .28

101 CATTTTAGTTTCCTCTTCCACGAATTTCCA gnl|UG|Hs#S2826142 32 .28
111 TCCTCTTCCACGAATTTCCATCATTGTTCA gnl|UG|Hs#S3439044 34 .07
121 CGAATTTCCATCATTGTTCATTTTCCTCTT gnl|UG|Hs#S3439044 34 .07
131 TCATTGTTCATTTTCCTCTTTGGTTGTCTA gnl|UG|Hs#S2512174 32 .28
141 TTTTCCTCTTTGGTTGTCTATTTTTAAATG gnl|UG|Hs#S2512174 32 .28
151 TGGTTGTCTATTTTTAAATGAAAAAGCACC gnl|UG|Hs#S1646953 36 .018
161 TTTTTAAATGAAAAAGCACCAGGATTTTAG gnl|UG|Hs#S1646953 36 .018
171 AAAAAGCACCAGGATTTTAGAAATATCTTT gnl|UG|Hs#S1692901 34 .07
181 AGGATTTTAGAAATATCTTTTTTTTTGGTC gnl|UG|Hs#S1459454 30 1.1 �
191 AAATATCTTTTTTTTTGGTCAATCATATAT
201 TTTTTTGGTCAATCATATATGACCCAAATC gnl|UG|Hs#S2511077 30 1.1 �
211 AATCATATATGACCCAAATCAATATGACCA gnl|UG|Hs#S2264745 30 1.1 �
221 GACCCAAATCAATATGACCAAAAAAATGAA gnl|UG|Hs#S2874360 28 4.3 �
231 AATATGACCAAAAAAATGAAAACATTTTTT gnl|UG|Hs#S3507254 28 4.3 �
241 AAAAAATGAAAACATTTTTTCCTTATCTAT gnl|UG|Hs#S2649446 36 .018
251 AACATTTTTTCCTTATCTATATTTTTAGAT gnl|UG|Hs#S3507655 38 .004
261 CCTTATCTATATTTTTAGATTATTTGTTTA gnl|UG|Hs#S3507655 38 .004
271 ATTTTTAGATTATTTGTTTATACCAGAATT gnl|UG|Hs#S1731899 36 .018
281 TATTTGTTTATACCAGAATTTGAAATTTTT gnl|UG|Hs#S1162424 32 .28
291 TACCAGAATTTGAAATTTTTCTCCATGCTC gnl|UG|Hs#S4015371 36 .018
301 TGAAATTTTTCTCCATGCTCAGAATTTCAT gnl|UG|Hs#S4015371 32 .28
311 CTCCATGCTCAGAATTTCATTTTAAATATG gnl|UG|Hs#S712102 32 .28
321 AGAATTTCATTTTAAATATGTTCGTGATAT gnl|UG|Hs#S1040378 32 .28
331 TTTAAATATGTTCGTGATATTATTGAAGTC gnl|UG|Hs#S472703 34 .07
341 TTCGTGATATTATTGAAGTCACCCCCCCCC gnl|UG|Hs#S222457 34 .07



SECTION 3.3 PREDICTION OF CROSS-HYBRIDISATION TO RELATED GENES 51

Bit
3′ Oligo Score E Val Use?

351 TATTGAAGTCACCCCCCCCCACTTTATTTG
361 ACCCCCCCCCACTTTATTTGTTTTCATATA gnl|UG|Hs#S3988102 36 .018
371 ACTTTATTTGTTTTCATATATCATGAGAAG gnl|UG|Hs#S3988102 36 .018
381 TTTTCATATATCATGAGAAGTCAAAGAATC gnl|UG|Hs#S1693871 32 .28
391 TCATGAGAAGTCAAAGAATCAAAGCAATAT gnl|UG|Hs#S1726320 32 .28
401 TCAAAGAATCAAAGCAATATATTCTCACAG gnl|UG|Hs#S3854638 30 1.1 �
411 AAAGCAATATATTCTCACAGCCATGCACAT gnl|UG|Hs#S938742 30 1.1 �
421 ATTCTCACAGCCATGCACATTTTCTCCCTG gnl|UG|Hs#S3422346 32 .28
431 CCATGCACATTTTCTCCCTGTCTTCAGTCC gnl|UG|Hs#S1388024 34 .07
441 TTTCTCCCTGTCTTCAGTCCTGTGTCTGTC gnl|UG|Hs#S2139611 36 .018
451 TCTTCAGTCCTGTGTCTGTCACTCTCATAA gnl|UG|Hs#S2294332 32 .28
461 TGTGTCTGTCACTCTCATAATCCTGTTTCA gnl|UG|Hs#S1732357 32 .28
471 ACTCTCATAATCCTGTTTCAGCACCTATGA gnl|UG|Hs#S1732357 32 .28
481 TCCTGTTTCAGCACCTATGAAGGCACTTCT gnl|UG|Hs#S1730614 30 1.1 �
491 GCACCTATGAAGGCACTTCTGTGGAATACT gnl|UG|Hs#S3988737 32 .28
501 AGGCACTTCTGTGGAATACTTGATTACAGA gnl|UG|Hs#S3542723 30 1.1 �
511 GTGGAATACTTGATTACAGACCCAGCCAAT gnl|UG|Hs#S226217 30 1.1 �
521 TGATTACAGACCCAGCCAATACTTTCTACA gnl|UG|Hs#S4027871 30 1.1 �

is the gene sequence itself and the third sequence is the chromosome sequence from
the genomic DNA containing the gene. This demonstrates the care that needs to be
taken when selecting a BLAST database to ensure that the gene is represented only
once. The longest alignment to a different gene is 18 bases.

EXAMPLE 3.4 HIGH-THROUGHPUT BLAST FOR ADH2 PROBE SELECTION

We continue our probe selection methodology for ADH2 that we started in Example
3.2 by choosing 30mer oligonucleotides from the 600 bases at the 3′ end of ADH2. In
this example we examine 30mers with 10-base intervals between probes in order to fit
the probes into the tables of the chapter. In a real probe design application, it would
be better to look at every possible probe.

In Table 3.2 we show all the probes that do not contain repeat-masked sequence,
together with the results of the BLAST search against the human UniGene database
Build 148. BLAST has a built-in low-complexity filter and was not able to perform
a homology search on the probes numbered 41, 191 and 351 because of the poly-T
and poly-C bases towards the middle of the sequence. We therefore rule out these
sequences as potential probes.

The bit score is in most cases twice the length of the longest perfect alignment. In
this example, we have selected those probes with an e-value of at least 1.0, equivalent
to a bit score of less than or equal to 30. This corresponds to a perfect alignment over
15 or fewer bases. We have filtered out those probes with higher bit scores. This leaves
us with 13 possible probes for the next step of the oligonucleotide design procedure.
When designing longer oligonucleotides, or oligonucleotides for genes with close
family members, you will need to use different thresholds.
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SECTION 3.4 THE THERMODYNAMICS OF NUCLEIC ACID
DUPLEXES AND THE PREDICTION OF MELTING TEMPERATURE

In order to predict the melting temperature and the stability of secondary structure
in probes (Section 3.5), we need an understanding of the thermodynamics of nucleic
acid duplexes. There are three key concepts that we use: the changes in enthalpy,
entropy and Gibbs free energy of chemical reactions. With nucleic acid duplexes
or structures, the chemical reactions in which we are interested are the formation
or disassociation of hydrogen bonds and stacking interactions between the base
pairs.

The change in enthalpy of a chemical reaction, known as �H, is equal to the heat
absorbed by the reaction at constant pressure.

The change in entropy of a chemical reaction, known as �S, is a measure of the
loss of capacity of a system to do work. It can be thought of as a measure of the loss of
degrees of freedom in the system.

The change in Gibbs free energy of a chemical reaction, known as �G, is defined
by the following equation:

�G = �H − T�S (Eq. 3.1)

This measures the stability of the chemical reaction at the temperature T, assuming
constant pressure and temperature. Equation 3.1 summarises the balance between
the tendency of a system to minimise its enthalpy (releasing heat in accordance with
the first law of thermodynamics) and to maximise its entropy (in accordance with the
second law of thermodynamics).

Themeltingtemperatureof a duplex depends on the concentration of the reactants
and is given by the following equation:

Tm = �H/(�S − R ln(C/4)) (Eq. 3.2)

In this equation, R is the molar gas constant, equal to 0.001987 kcal mol−1, C is the
molar concentration of the target1 and ln denotes a natural logarithm.

We calculate the thermodynamics of nucleic acid duplexes by calculating their en-
thalpy and entropy. From these quantities, we derive the free energy at the desired hy-
bridisation temperature, or the melting temperature at an appropriate concentration.

The calculation of both the enthalpy and entropy of a nucleic acid duplex is per-
formed using the base-stacking model. This is a linear model that calculates these
thermodynamic properties as a sum of contributions from the individual base pairs
in the duplex. The sum is based on parameters for each base pair that depend not only

1 It is important to remember that this equation is derived for chemical reactions that occur in
solution. With DNA microarrays, one of the DNA molecules is attached to solid support and it is
not clear to what extent this equation may be valid. At the time of this writing, there have been
no published comprehensive studies of the thermodynamics of nucleic acid hybridisation on solid
support, so most people continue to use this equation in the absence of a better alternative.
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(a)

5’-AA-3’   5’-AC-3’   5’-AG-3’   5’-AT-3’
|| || || ||

3’-TT-5’   3’-TG-3’   3’-TC-5’   3’-TA-5’

5’-CA-3’   5’-CC-3’   5’-CG-3’
|| || ||

3’-GT-5’   3’-GG-5’   3’-GC-5’

5’-GA-3’   5’-GC-3’
|| ||

3’-CT-5’   3’-CG-5’

5’-TA-3’
||

3’-AT-5’

(b)

5’-AA-3’   5’-AC-3’   5’-AG-3’   5’-AT-3’
|| || || ||

3’-UU-5’   3’-UG-3’   3’-UC-5’   3’-UA-5’

5’-CA-3’   5’-CC-3’   5’-CG-3’   5’-CT-3’
|| || ||         ||

3’-GU-5’   3’-GG-5’   3’-GC-5’   3’-GU-5’

5’-GA-3’   5’-GC-3’   5’-GG-3’   5’-GT-3’
|| ||         ||         ||

3’-CU-5’   3’-CG-5’   3’-CC-5’   3’-CU-5’

5’-TA-3’   5’-TC-3’   5’-TG-3’   5’-TT-3’
||         ||         ||         ||

3’-AU-5’   3’-UG-5’   3’-UC-5’   3’-UU-5’

Figure 3.2: (a) DNA–DNA base-stacking interactions. There are 10 different interactions because the
parameters are the same when reading either strand from 5′ to 3′. For example, the interaction with
5′–CT–3′ on the top strand binding with 3′–GA–5′ on the bottom strand is identical to the interaction 5′–
AG–3′ on the top strand binding with 3′–TC–5′ on the bottom strand. Each base-stacking interaction has
entropy and enthalpy parameters associated with it. (b) DNA–RNA base-stacking interactions. All 16
base-stacking interactions are possible. The top strand is the DNA (probe) and the bottom strand is the
RNA (target). Each of these base-stacking interactions has enthalpy and entropy parameters associated
with it.

on the base pair formed (A–T or G–C) but also on the base pair of the previous base on
the 5′ strand. Added to the model are parameters for the initiation and termination of
the helix, which depend on the base pairs at either end of the duplex.

EXAMPLE 3.5 BASE-STACKING FOR A 10-BASE DUPLEX

The following is a 10-base DNA–DNA duplex:

5′-TAACCACGAT-3′

| | | | | | | | | |
3′-ATTGGTGCTA-5′

There are nine base-stacking interactions and two initiation terms. To calculate the
�H and �S of this duplex, we add base-stacking parameters for TA, AA, AC, CC, CA,
AC, CG, GA and AT interactions, and two parameters for A–T initiation.

Base-Stacking and Initiation Parameters

The number of possible base-stacking interactions depends on whether we are con-
sidering DNA–DNA, DNA–RNA or RNA–RNA duplexes. Since microarrays use DNA
probes, we will not consider the case of RNA–RNA duplexes. Spotted microarrays
are usually hybridised with cDNA targets, and Affymetrix GeneChips are usually hy-
bridised with cRNA targets. Therefore we consider both DNA–DNA and DNA–RNA
duplexes.

With DNA–DNA hybridisation, there are 10 possible base-stacking interactions
(Figure 3.2a). The reason why there are only 10 interactions is that a DNA–DNA
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TABLE 3.3

Parameters for all base-stacking interactions for DNA–DNA and DNA–RNA duplexes. The parameters
are taken from the papers SantaLucia (1998) and Sugimoto et al. (1995) – both references are given in
full at the end of the chapter. Note that the DNA parameters are symmetric, e.g., the parameters for
the probe sequence AA binding to target sequence TT are the same as for probe TT binding to target
AA.

These parameters have been calculated by looking at melting curves for oligonucleotide duplexes
in solution. On a microarray, the probe is anchored to glass support. It is not clear to what extent these
parameters truly reflect the chemistry of hybridisation on microarrays: it is probable that at least the
entropy parameters will differ, and possibly even the enthalpy parameters. However, there have been
no published studies to date of comprehensive measurement of these parameters on solid support.
Therefore, people generally continue to use these parameters as they represent the best available data.

Probe DNA Target RNA Target RNA ∆S
Sequence Sequence DNA ∆H DNA ∆S Sequence RNA ∆H (cal mol−1

(5′ 3′) (5′ 3′) (kcal mol−1) (cal mol−1 K−1) (5′ 3′) (kcal mol−1) K−1)

AA TT −7.9 −22.2 UU −11.5 −36.4
AC GT −8.4 −22.4 GU −7.8 −21.6
AG CT −7.8 −21.0 CU −7.0 −19.7
AT AT −7.2 −20.4 AU −8.3 −23.9
CA TG −8.5 −22.7 UG −10.4 −28.4
CC GG −8.0 −19.9 GG −12.8 −31.9
CG CG −10.6 −27.2 CG −16.3 −47.1
CT AG −7.8 −21.0 AG −9.1 −23.6
GA TC −8.2 −22.2 UC −8.6 −22.9
GC GC −9.8 −24.4 GC −8.0 −17.1
GG CC −8.0 −19.9 CC −9.3 −23.2
GT AC −8.4 −22.4 AC −5.9 −12.3
TA TA −7.2 −21.3 UA −7.8 −23.2
TC GA −8.2 −22.2 GA −5.5 −13.5
TG CA −8.5 −22.7 CA −9.0 −26.1
TT AA −7.9 −22.2 AA −7.8 −21.9
Initiation (G · C) 0.1 −2.8 1.9 −3.9
Initiation (A · T) 2.3 4.1 1.9 −3.9

duplex has a level of symmetry; we can think of the duplex forming 5′–3′ relative to ei-
ther strand. With DNA–RNA hybridisation, all base-stacking interactions are possible
(Figure 3.2b). The most up-to-date thermodynamic parameters for the different base-
stacking interactions and initiation parameters are given in Table 3.3.

It is important to notice that the base-stacking model supersedes the use of base
composition (e.g., specifying % GC content) in determining the melting temperature
and stability of a nucleic acid duplex. The base-stacking model implicitly includes
base composition but is more sophisticated because it also takes into account the
order of the bases in the sequences.

EXAMPLE 3.6 THERMODYNAMIC CALCULATIONS FOR A 10-BASE DUPLEX

We use the base-stacking parameters from Table 3.3 to calculate the thermodynamic
properties of the duplex in Example 3.5. The enthalpy and entropy are the sum of the
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appropriate base-stacking and intiation parameters:

�H = −74.4 kcal mol−1

�S = −200.7 cal mol−1K−1

The free energy and melting temperature are calculated using Equations 3.1 and 3.2.
For example, we shall calculate the �G at 37◦C and the melting temperature with a
target concentration of 1pM.

�G = −74.4 + (273.2 + 37) × 200.7 × 10−3 kcal mol−1 = −12.1 kcal mol−1

Tm = −74.4/(−200.7 × 10−3 + 0.001987 × ln(10−12)) K = 291.1 K = 17.9◦C

Adjustments for Salt Concentrations

The parameters in Table 3.3 are based on studies performed in a solution of 1M NaCl.
It is possible to make an approximate adjustment for other salt concentrations. The
entropy, �S, is adjusted for the molar Na+ concentration, using the following formula:

�S (Na+corrected) = �S (uncorrected) + 0.368 × N × ln [Na+] (Eq. 3.3)

In this equation, N is the number of phosphate groups in the duplex divided by two.
When each base has a phosphate group, it is simply the length of the duplex.

EXAMPLE 3.7 SALT CORRECTION FOR OLIGONUCLEOTIDE

Consider the same oligonucleotide as in Example 3.6, but this time with duplex for-
mation at the more stringent conditions of 0.1M NaCl. Using Equation 3.3, we get

�S (Na+corrected) = −200.7 − 0.368 ∗ 10 ∗ 2.3 cal mol−1K−1 = −209.2 cal mol−1K−1

We can now calculate the �G at 37◦C and the Tm at a molar concentration of 10−12

using the corrected �S and obtain

�G = −9.5 cal mol−1K−1

Tm = 8.5◦C

So we see that increasing the stringency of the salt conditions has both increased the
�G at 37◦C and reduced the melting temperature.

EXAMPLE 3.8 PROBE SELECTION OF ADH2 CONTINUED – MELTING TEMPERATURE

We continue the probe selection for ADH2 by computing the melting temperatures of
the 30mer oligonucleotides. To compute the melting temperature, we need to supply
a target concentration. This is a circular problem, because we do not know the target
concentration until we have performed microarray experiments. However, in most
realistic concentration ranges, the effect of the concentration term is much smaller
than the sequence-specific effects. In this example, we have used a concentration of
1pM.
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TABLE 3.4

Thermodynamic parameters for oligonucleotides so far selected. Enthalpy and entropy have been
computed using the base-stacking parameters of Table 3.3. The melting temperature has been calcu-
lated using a 1pM target concentration.

We wish to equalise the melting temperatures on the array at 60◦C, so we choose the five probes
with Tm within ± 2◦ of 60◦C. The remaining probes are filtered out.

∆H ∆S
(kcal (Kcal mol−1

3′ Oligo mol−1) K−1) Tm (◦C) Use?

31 ATCTCATTTTGCTTTATTTTTTTTTTTTTG −228 −634.6 56.2
51 TTTTTTTTTGATCACACCAAGGCTCAGTGC −235.7 −637.6 65.8

181 AGGATTTTAGAAATATCTTTTTTTTTGGTC −225.4 −624.9 57.0
201 TTTTTTGGTCAATCATATATGACCCAAATC −227.3 −624.8 59.9 �
211 AATCATATATGACCCAAATCAATATGACCA −223.6 −618.6 57.4
221 GACCCAAATCAATATGACCAAAAAAATGAA −228.7 −632.2 58.3 �
231 AATATGACCAAAAAAATGAAAACATTTTTT −225.1 −629.4 54.4
401 TCAAAGAATCAAAGCAATATATTCTCACAG −229 −630.7 59.5 �
411 AAAGCAATATATTCTCACAGCCATGCACAT −230.9 −631.2 62.0 �
481 TCCTGTTTCAGCACCTATGAAGGCACTTCT −232.3 −628.1 65.6
501 AGGCACTTCTGTGGAATACTTGATTACAGA −229.5 −626.9 62.2
511 GTGGAATACTTGATTACAGACCCAGCCAAT −231.1 −629.8 63.0
521 TGATTACAGACCCAGCCAATACTTTCTACA −228.7 −624.9 61.9 �

In Table 3.4, we show the computation of �H, �S and Tm for the 13 probes that
passed the BLAST filter of Example 3.4. As an example, we select probes on the array
with melting temperatures close to 60◦C. We therefore filter out all probes with Tm less
than 58◦C or Tm greater than 62◦C. Five possible probes remain for the final step of
the oligonucleotide design.

SECTION 3.5 PROBE SECONDARY STRUCTURE

In the final step of oligonucleotide probe design, we select probes that do not
self-hybridise. One can think of this in two ways: either the oligonucleotide could
form a stem-loop structure with itself (Figure 3.3a), or an oligonucleotide could
dimerise with neighbouring, identical oligonucleotides on the surface of the array
(Figure 3.3b).

Although from a chemical perspective these cases are quite different, from a com-
putational perspective they are very similar: both cases involve the identification
of palindromes2 in potential DNA probes, and the exclusion of probes that contain
palindromes for use on a microarray.

2 Bioinformaticians refer to a DNA sequence as palindromic if it is identical to its reverse complement
sequence, e.g., the sequence ACGT. This is a slight difference from the linguistic use, in which a word
(or sentence) is palindromic if it is identical to its reverse, e.g., ABBA.
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(a) (b)
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A A A
---------------------------------------------------------------------------------Glass surface

Figure 3.3: Self-hybridisation of oligonucleotide probes. A 20mer oligonucleotide probe with a self-
complimentarity region. In (a), the probe has formed an internal stem-loop structure that could prevent
it from hybridising to target. In (b), two neighbouring (and identical) probes have dimerised. In both
cases, the same bases are involved in the duplex formation.

The thermodynamic stability of palindromes is calculated in exactly the same way
as in Section 3.4, using the base-stacking model and any appropriate salt corrections.
It is also possible to compute the stability of imperfect palindromes, using parameters
for non–Watson–Crick base-pairings. We do not cover non–Watson–Crick thermody-
namics in this book.3

Computation of Probe Secondary Structure

There are two approaches that can be employed to compute the secondary structure
of potential oligonucleotide probes. The first is to write your own code to identify
palindromes and compute the thermodynamics of the helices formed using the base-
stacking model. This approach will provide a fast and effective search, but requires
advanced programming skills. The interested reader is referred to the book by Gusfield
cited at the end of the chapter, which describes algorithms to identify palindromes in
sequences.

In this chapter, we shall describe the simpler but slower approach, which is to use
a program called mfold that predicts secondary structure of DNA and RNA molecules
from their sequence. It uses the base-stacking model to calculate thermodynamic
properties of the duplexes, as well as additional thermodynamic parameters for
mismatches, loops and bulges. Mfold is accessible via a web interface, and a
command-line version can be obtained from Washington University, which is free
for academic use.

3 It is also possible to use thermodynamic calculations to compute the stability of the cross-
hybridisation of probes to related targets. The use of base-stacking parameters for non–Watson–
Crick base-pairings allows the calculation even when the homology is not exact. The implementa-
tion of such methods requires a high level of programming skill. The interested reader is referred to
the book by Gusfield cited at the end of the chapter, which describes string-matching algorithms.
These can be combined with thermodynamic calculations in order to compute the thermodynamic
stability of imperfect cross-hybridising duplexes.
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BOX 3.3 Mfold Output

Oligo 201 from Table 3.4 was submitted to the mfold DNA folding server which produced the
results below. Mfold has computed ∆H and ∆S for the structure, as well as ∆G at the chosen
temperature (37◦C) and Tm at 1M concentration. The structure has a 5-base stem and 8-base
loop that is marginally stable at 37◦C (∆G is negative).

Linear DNA folding at 37◦C. [Na+] = 1.0 M, [Mg++] = 0.0 M.
Structure 1
Folding bases 1 to 30 of ADH2-1
dG = −3.3 dH = −43.8 dS = −130.6 Tm = 62.3

10
TTTTTT| ATC

GGTCA A
CCAGT T

CTAAACˆ ATA
. 20

Using Mfold over the Web

Mfold is available over the World Wide Web via a number of servers. The most useful
interface for oligonucleotide design is the quickfold interface. This allows the user to
fold many short sequences with a single query. The quickfold interface is available at
the following URL:

http://bioinfo.math.rpi.edu/∼mfold/rna/form3.cgi

Mfold takes a DNA or RNA sequence as input, and a number of parameters. It out-
puts the folds that minimise the free energy of the folded molecule at the supplied
temperature. There are many calculations and drawings returned by mfold, but of
particular importance are the free energy calculations and drawings of the folded
molecules.

The inputs that you need to supply to mfold are as follows:

� A name for the group of sequences.
� The sequences themselves, separated by semicolons (“;”).
� Whether the nucleic acid is linear or circular. For DNA probes on a microarray,

we always use linear DNA.
� The folding temperature: this may be the intended hybridisation temperature,

or a slightly higher temperature.
� The ionic conditions: you can supply molar concentrations of both Na+ and

Mg++ ions.
� The upper bound on number of computed foldings: this should be set to 1 as

we are only interested in the lowest energy fold.
� All other parameters are not relevant for microarray probe design and can be

ignored.
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TABLE 3.5: Results of Mfold on Oligos

Mfold was used to calculate the �G of the lowest energy self-complementary structure of each probe.
In each probe, we have highlighted the bases that form an internal helix. Probes 201 and 401 form
a 5-base helix, but the helix in probe 201 is more stable because of its base composition. Probe 201
might be less of a good probe than the others because of its stronger self-complementarity. This probe
will also hybridise to neighbouring identical probes on the array via helix formation among the same
bases. Probe 221 might also be ruled out because of its poly-A stretch. The remaining three probes
could all be good 30mer oligos for this gene.

∆G
3′ Oligo (kcal mol−1)

201 TTTTTTGGTCAATCATATATGACCCAAATC −3.3
221 GACCCAAATCAATATGACCAAAAAAATGAA 0.3
401 TCAAAGAATCAAAGCAATATATTCTCACAG −1.2
411 AAAGCAATATATTCTCACAGCCATGCACAT −0.9
521 TGATTACAGACCCAGCCAATACTTTCTACA 0.9

EXAMPLE 3.9 MFOLD OF A 30MER OLIGONUCLEOTIDE

As an example, we submit the 30-base oligo for the gene ADH2, number 201 from
Table 3.4, to the mfold DNA-folding server. The mfold output (Box 3.3) gives the
thermodynamic parameters for the secondary structure: the enthalpy and entropy of
the structure, the free energy at the chosen temperature, and the melting temperature
of the structure at 1M concentration. The predicted secondary structure is shown
below the thermodynamic parameters. In this example, there is a 5-base stem and
8-base loop.

EXAMPLE 3.10 FINAL PROBE SELECTION – FILTERING ON INTERNAL
SECONDARY STRUCTURE

All five sequences selected from Example 3.7 are submitted to the mfold server to
check for internal secondary structure. None of the probes has a particularly stable
internal secondary structure (Table 3.5). Probe 201 has the most stable structure and
we would not use that probe. Probe 221 might not be favoured because of its poly-A
stretch. The remaining probes would all be good candidate oligonucleotide probes
for use on a microarray.

KEY POINTS SUMMARY

� Oligonucleotide probes on a microarray should be
� Sensitive
� Specific
� Isothermal

� We choose probes for a gene using several filters:
� Use sequence from the 3′ end of the gene.
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� Mask repetitive sequence.
� Remove cross-hybridising probes.
� Remove probes with wrong melting temperatures.
� Remove probes with internal secondary structure.

� High-throughput oligonucleotide probe design requires some programming
skills.

SUPPLEMENTARY INFORMATION AND RESOURCES

Textbooks

Smith, E. B. 1999. Basic Chemical Thermodynamics (4th Edition). Oxford University
Press.

An excellent introduction to thermodynamic principles such as enthalpy, entropy and free

energy, described within the context of chemical reactions. The book presumes a basic

knowledge of calculus.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences. Cambridge University
Press.

A beautiful book on sequence algorithms. Contains detailed algorithms with which you

can compute free energies of imperfect homologies and palindromes. The book presumes

a good understanding of computer algorithms, but is well worth the effort.

Papers on Nucleic Acid Thermodynamics

SantaLucia Jr., J. 1998. A unified view of polymer, dumbbell and oligonucleotide DNA
nearest-neighbour parameters. Proceedings of theNational Academy of Sciences 95:
1460–65.

A review of thermodynamic parameters for DNA–DNA duplexes. John SantaLucia also

has many publications detailing thermodynamic parameters for non–Watson–Crick

interactions.

Sugimoto, N. et al., 1995. Thermodynamic parameters to predict stability of RNA/DNA
hybrid duplexes. Biochemistry 34: 11211–16.

A similar review of thermodynamic parameters for RNA–DNA duplexes.

Software Available for Download from the Internet

http://repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker

There is a link from this page to an email address for the author of RepeatMasker, Arian Smit,

from whom non-commercial licenses can be obtained. There is also a link to a company

called GeoSpiza who distribute commercial licenses.
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http://bioinfo.math.rpi.edu/∼zukerm/rna/mfold-3.1.html

Information for obtaining mfold is available from this site. Again, this software is free for

non-commercial use, and Washington University distributes commercial licenses for a

fee.

ftp://ftp.ncbi.nih.gov/blast/

The BLAST ftp site. BLAST is available to all for free and has been compiled for many

versions of Unix, including Linux, Solaris, SGI and Alpha.



CHAPTER FOUR

Image Processing

SECTION 4.1 INTRODUCTION

The image of the microarray generated by the scanner (Section 1.3) is the raw data of
your experiment. Computer algorithms, known as feature extraction software, convert
the image into the numerical information that quantifies gene expression; this is the
first step of data analysis. The image processing involved in feature extraction has a
major impact on the quality of your data and the interpretation you can place on it.

In Chapter 1 we discussed three technologies by which microarrays are manufac-
tured: in-situ synthesis with the Affymetrix platform, inkjet in-situ synthesised ar-
rays (Rosetta, Agilent and Oxford Gene Technology) and pin-spotted microarrays.
This chapter focusses on pin-spotted arrays. Affymetrix has integrated its image-
processing algorithms into the GeneChip experimental process and there are no
decisions for the end-user to make. Inkjet arrays are of much higher quality than
pin-spotted arrays and do not suffer from many of the image-processing difficulties
of spotted arrays; also, Agilent provides image-processing software tailor-made for
their platform, so there are no decisions for the end-user either.

Pin-spotted arrays, on the other hand, provide the user with a wide range of choices
of how to process the image. These choices have an impact on the data, and so this
chapter describes the fundamentals of these computational methods to give a better
understanding as to how they impact the data.

SECTION 4.2 FEATURE EXTRACTION

The first step in the computational analysis of microarray data is to convert the dig-
ital TIFF images of hybridisation intensity generated by the scanner into numerical
measures of the hybridisation intensity of each channel on each feature. This process
is known as feature extraction. There are four steps:

1. Identify the positions of the features on the microarray.
2. For each feature, identify the pixels on the image that are part of the feature.
3. For each feature, identify nearby pixels that will be used for background

calculation.
4. Calculate numerical information for the intensity of the feature, the intensity

of the background and quality control information.

We discuss each of these steps in turn.
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(a)

Figure 4.1: (a) An example image of a complete microarray. In this case, there are 48 grids in a 12× 4
pattern, and each grid has 12× 16 features. Therefore, there are a total of 9,216 features on this array.
(b) The arrangement of grids and features according to the pins in the cassette. In this example, the
spotting robot has 16 pins arranged in a 4× 4 pattern. Each pin prints three grids, so that the pattern
of spotting by the 16 pins is repeated three times on the array. Each grid consists of 192 features
arranged in a 12× 16 pattern. The total number of features on the array is 9,216. These could all be
different genes (coming from 24 different 384-well plates), genes replicated in duplicate (12 different
384-well plates), or genes replicated in triplicate (8 different 384-well plates). (Please see also the color
section at the middle of the book.)

(continued )
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Figure 4.1: (continued )

Identifying the Positions of the Features

The features on most microarrays are arranged in a rectangular pattern. In general,
however, the pattern is not completely regular: the features on the array are arranged
in grids, with larger spaces between the grids than between the features within each
grid (Figure 4.1). The grids come about because there are several pins on the cassette
on the spotting robot (Figure 1.1); all the features in each grid have been printed by
the same pin.

In order for the feature extraction software to work, it needs to be told how many
grids make up the array, and the parameters associated with the grids:

� How many grids in each direction (x and y)
� How many features per grid in each direction (x and y)
� The spacing between the grids

All feature extraction software packages include the facility to provide this in-
formation.

EXAMPLE 4.1 GRIDS FROM BIOROBOTICS MICROGRID SPOTTING ROBOT

A BioRobotics Microgrid spotting robot is fitted with a pin-head holding 16 pins in a
4 × 4 arrangement. It is used to make an array with 9,216 features (Figure 4.1) arranged
in 48 grids, each of which contains 192 features. Each pin spots three of the grids; these
could be replicates of the same samples or might be different genes.
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Uneven grid positionsCurve within a grid

Uneven spot sizes

Uneven spot spacing

Figure 4.2: Problems with microarray images from pin-spotted arrays: (1) Uneven grid positions. The
two grids are not aligned. This occurs because the pins are not perfectly aligned in the cassette.
(2) Curve within the grid. Note that the centers of the features at the top of the vertical line lie on
the line, but that the centers of the features at the bottom of the line are to the left of the line. This
can happen if the array is not horizontal during array manufacture, or because of movement of the pins
during manufacture. (3) Uneven spacing between features. This occurs because of pins moving during
manufacture; this itself could result from the glass slide not being perfectly flat. (4) Uneven feature sizes.
Different features can have different sizes as a result of different volumes of liquid being deposited on
the array. This can also result from uneven drying of the features, so it is important to maintain con-
stant temperature and humidity of the array during the manufacture process. (Please see also the color
section at the middle of the book.)

A problem with identifying the positions of the features on the array is that the
positions and sizes of the features within each grid may not be uniform (Figure 4.2).
There are at least four difficulties that can arise:

� Uneven grid positions. The grids are not aligned with one another. This can
happen if the pins are not perfectly aligned in the cassette.

� Curve within a grid. The glass slide is not completely horizontal or the pin has
moved slightly in the cassette and so the features are printed in a curved pattern
on the surface of the array.

� Uneven feature spacing. The pins have moved slightly in the cassette or the
surface of the glass is not completely flat.

� Uneven feature size. More or less fluid has been deposited on the glass during
the manufacture of the array.

All feature extraction software contains algorithms to automatically find the positions
of the features. However, none of these algorithms are infallible. Current practise
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TABLE 4.1: Segmentation Algorithms of
Common Image-Processing Software
Packages

Segmentation Software
Method Implementing Method

Fixed Circle ScanAnalyze
GenePix
QuantArray

Variable Circle QuantArray
GenePix
Dapple
Agilent Feature Extraction

Histogram ImaGene
QuantArray

Adaptive Shape Spot

requires manual supervision of the feature extraction process to ensure that all fea-
tures are found by the software, and usually some level of manual intervention to align
the software so that all features are found. The majority of feature extraction software
packages have this facility.

Identifying the Pixels That Comprise the Features

The next step in the feature extraction procedure is called segmentation; this is the
process by which the software determines which pixels in the area of a feature are part
of the feature, and so their intensity will count towards a quantitative measurement
of intensity at that feature. There are four commonly used methods for segmentation:

� Fixed circle
� Variable circle
� Histogram
� Adaptive shape

Different software packages implement different segmentation algorithms (Table 4.1)
and some packages implement more than one algorithm, which gives the user the
option to compare different algorithms on the same image.

Fixed Circle Segmentation

Fixed circle segmentation places a circle of fixed size over the region of the feature and
uses all the pixels in the circle as those that form part of the feature (Figure 4.3a). The
problem with fixed circle segmentation is that it gives inaccurate results if the features
are of different size – which is usually the case on most microarrays. Therefore, fixed
circle segmentation should be avoided if possible.
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(a) (b)

(c) (d) (e)

Figure 4.3: (a) Fixed circle segmentation. A circle of the same size is placed on every feature on the
array and the pixels inside the circle are used to determine the intensity of the feature. This is not a good
method because the circle will be too large for some features and too small for others. (b) Variable circle
segmentation. A circle of different size is applied to each feature and the pixels inside the circle are used
to determine the intensity of the feature. This performs better on different size features but does not
perform so well on features with irregular shapes, for example, the irregular red feature that is marked
with an arrow. (c) Zoom in on the red channel of the irregularly shaped feature marked with the arrow in
(b). Note the black region where there is no hybridisation, probably because there is no probe attached
to the glass in that area. (d) Histogram method applied to that feature. The red pixels are the ones that
have been used to calculate the feature signal; the green pixels have been used to calculate the feature
background. The black pixels are unused. The area corresponding to the black region in (c) is not used
for calculating the feature intensity. The brightest features have also been excluded. The red-to-green
ratio of this feature calculated by fixed circle segmentation is 1.8, variable circle segmentation is 1.9,
and histogram segmentation is 2.6; so the measured differential gene expression between the samples
is different with the different algorithms. Because of the irregular shape of the feature, the histogram
method probably gives the most realistic measurement. (e) Histogram of the intensities of the pixels
in the irregularly shaped feature. The red bars represent pixels used for the signal intensity; the green
bars represent pixels used for the background intensity; the black bars are unused pixels. The brightest
and darkest pixels are not used, thus giving a better measurement of hybridisation intensity. (Please
see also the color section at the middle of the book.)

Variable Circle Segmentation

Variable circle segmentation fits a circle of variable size onto the region containing
the feature (Figure 4.3b). This method is able to resolve features of different sizes, but
performs less well on irregularly shaped features.

Histogram Segmentation

Histogram segmentation fits a circle over the region of the feature and background
and then looks at a histogram of the intensities of the pixels in the feature (Figure 4.3e).
The brightest and dimmest pixels are not used in the quantification of feature inten-
sity. Histogram segmentation produces reliable results for irregularly shaped features.
Histogram methods can be unstable for small features if the circular mask is too large.
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(a) (b) (c)

Figure 4.4: Background regions used by different software. Different software packages use different
pixel regions surrounding the feature to determine the background intensity. (a) ScanAlyze: the region
is adjacent to the feature. This will be inaccurate if the feature is larger than the fixed size of the circle
used for segmentation. (b) ImaGene: there is a space between the feature and the background. This is
a better method than (a). (c) Spot and GenePix: the background region is in between the features. This
is also a good method.

Adaptive Shape Segmentation

This is a more sophisticated algorithm that can also resolve features with irregular
shapes. The algorithm requires a smaller number of seed pixels in the center of each
feature to start. It then extends the regions of each feature by adjoining pixels that are
similar in intensity to their neighbours.

EXAMPLE 4.2 FEATURE EXTRACTION FOR AN IRREGULARLY SHAPED FEATURE

The program QuantArray can use fixed circle, variable circle and histogram segmen-
tation to determine the intensity of a feature. It was used for the irregularly shaped
feature shown marked with an arrow in Figure 4.3b. The red-to-green intensity ratio
for the three methods is as follows:

� Fixed circle: 1.8
� Variable circle: 1.9
� Histogram: 2.6

In this case, the histogram segmentation is likely to be the most reliable result because
the area of the spot that did not hybridise is not included. In this region, it is likely that
there is no probe attached to the array.

Identifying the Background Pixels

The signal intensity of a feature includes contributions from non-specific hybridi-
sation and other fluorescence from the glass. It is usual to estimate this fluores-
cence by calculating the background signal from pixels that are near each feature
but are not part of any feature. Different software packages use different regions near
each feature as the background pixels (Figure 4.4). The background intensity is sub-
tracted from the feature intensity to provide a more reliable estimate of hybridisation
intensity to each feature. Background subtraction is discussed in greater detail in
Section 5.2.
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Calculation of Numerical Information

Having determined the pixels representing each feature, the image-processing soft-
ware must calculate the intensity for each feature. Image-processing software will
typically provide a number of measures:

� Signal mean: the mean of the pixels comprising the feature
� Background mean: the mean of the pixels comprising the background around

the feature
� Signal median: the median of the pixels comprising the feature
� Background median: the median of the pixels comprising the background
� Signal standard deviation: the standard deviation of the pixels comprising the

feature
� Background standard deviation: the standard deviation of the pixels comprising

the background
� Diameter: the number of pixels across the width of the feature
� Number of pixels: the number of pixels comprising the feature
� Flag: a variable that is 0 if the feature is good, and will take different values if the

feature is not good

Table 4.2 shows some example output from ImaGene, which uses some of these fields.
There are a number of ways in which this information is used.

Most important is the measure of hybridisation intensity for each feature. Here
the user has a choice between the mean and the median of the pixel intensities. In
general, it is preferable to use the median over the mean. The reason for this is that
the median is more robust to outlier pixels than the mean: a small number of very
bright pixels (arising from noise) have the potential to skew the mean, but will leave
the median unchanged.

EXAMPLE 4.3 FEATURE WITH BRIGHT DUST

The feature shown in Figure 4.5 has a bright piece of dust on it. The red-to-green ratio
using the mean pixel intensity is 1.9. The red-to-green ratio using the median pixel
intensity is 1.3. The mean has been skewed by the bright pixels in the dust and so is
very different from the median. In this case, the median is a more robust measure.
This can be verified by removing the dust spot from the image and recalculating the
intensities: the mean is 1.4 and the median is 1.3.

The second important numerical information is the signal standard deviation. This
is used as a quality control for the array in two different ways (Figure 4.6):

� As measures of quality control of the features. If the standard deviation of a
feature is greater than say 50% of the median intensity, the feature could be
rejected as substandard.

� To determine whether an array is saturating. The problem with saturated fea-
tures is that we do not know the true intensity of the feature, and so it is not pos-
sible to use such features as part of a quantitative analysis of gene expression.
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Figure 4.5: Feature with bright dust. An otherwise good feature has a bright
piece of dust on it. In this case, the mean of the pixel intensities will be an un-
reliable measure of the intensity of the feature, because it will be skewed by the
bright pixels, whereas the median will be robust to this noise.

The third piece of important information to come from the feature extraction soft-
ware is the flag field. This is zero if the feature is good, but will be non-zero if the
feature has problems. Different image-processing software use different flag values
for different problems, but the typical problems are

� Bad feature. The pixel standard deviation is very high relative to the pixel mean.
� Negative feature. The signal of the feature is less than the signal of the back-

ground.
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Figure 4.6: Using the median vs. standard deviation plot. The standard deviation of the pixel inten-
sities for the Cy3 (green) signal of the features on an array is plotted against the median of the pixel
intensities as a method for quality control. For features with signal intensity less than about 40,000, the
standard deviation is approximately proportional to the mean, with a coefficient of variability (Chap-
ter 6) of about 23%. However, for features with higher signal intensity, the standard deviation decreases.
This is because these features have saturated pixels which all have the same intensity (with this particu-
lar scanner, the maximum pixel intensity is 56,818). The very brightest features have all pixels saturated
so the standard deviation is zero. Saturated features cannot be used as part of a quantitative analysis
of differential gene expression. The plot also shows a number of outlier features with very high pixel
standard deviation. These features may also be unreliable and could be excluded from further analysis.
The triangular region indicated represents reliable features which are not saturated and which have
coefficient of variability of less than 50%. Some of the features towards the top of the triangle might
also be considered outliers and excluded from analysis. (These data have been obtained privately from
Ed Southern.)
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� Dark feature. The signal of the feature is very low.
� Manually flagged feature. The user has flagged the feature using the image-

processing software.

It is also usual to remove flagged features from further analysis (Section 5.2).

KEY POINTS SUMMARY

� The image of your array is your raw data.
� Feature extraction software calculates numerical measurements of gene expres-

sion from the image.
� The choice of feature extraction algorithms will have an impact on the data you

generate.

RESOURCES AND FURTHER READING
Feature Extraction Software

� ScanAlyze:
http://rana.lbl.gov/EisenSoftware.htm

� GenePix:
http://www.axon.com/GN GenePixSoftware.html

� Spot:
http://experimental.act.cmis.csiro.au/Feature/index.php

� ImaGene:
http://www.biodiscovery.com/imagene.asp

� QuantArray:
http://lifesciences.dev.perkinelmer.com/areas/microarray/quantarray.asp

� Dapple:
http://www.cs.wustl.edu/∼jbuhler/research/dapple/

� Agilent:
http://www.chem.agilent.com/Scripts/PDS.asp?lPage = 2547

Papers

Adams, R. and Bischof, L. 1994. Seeded region growing. IEEE Transactions on Pattern
Analysis and Machine Intelligence 16: 641–47.

A description of the adaptive shape algorithm used by Spot.

Books

Kamberova, G. and Shah, S. 2002.DNAArray Image Analysis: Nuts & Bolts.DNA Press.

A book that concentrates specifically on DNA microarray image analysis.



CHAPTER FIVE

Normalisation

SECTION 5.1 INTRODUCTION

Normalisation is a general term for a collection of methods that are directed at re-
solving the systematic errors and bias introduced by the microarray experimental
platform. Normalisation methods stand in contrast with the data analysis methods
described in Chapters 7, 8 and 9 that are used to answer the scientific questions for
which the microarray experiment has been performed. The aim of this chapter is to
give an understanding of why we need to normalise microarray data, and the methods
for normalisation that are most commonly used. The chapter is arranged into three
further sections:

Section 5.2: Data Cleaning and Transformation, looks at the first steps in cleaning
and transforming the data generated by the feature extraction software before
any further analysis can take place.

Section 5.3: Within-Array Normalisation, describes methods that allow for the com-
parison of the Cy3 and Cy5 channels of a two-colour microarray. This section is
only relevant for two-colour arrays.

Section 5.4: Between-Array Normalisation, describes methods that allow for the
comparison of measurements on different arrays. This section is applicable both
to two-colour and single channel arrays, including Affymetrix arrays.

SECTION 5.2 DATA CLEANING AND TRANSFORMATION

The microarray data generated by the feature extraction software is typically in the
form of one or more text files (Table 4.2). Before you use the data to answer scientific
questions, there are a number of steps that are commonly taken to ensure that the
data is of high quality and suitable for analysis. This section describes three stages of
data cleaning and transformation:

� Removing flagged features
� Background subtraction
� Taking logarithms

Removing Flagged Features

In Chapter 4 we described four types of flagged features: bad features, negative fea-
tures, dark features and manually flagged features. These are features for which the

73
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image-processing software has detected some type of problem. There are two ap-
proaches to dealing with flagged features.

The first, and most common approach, is to remove flagged features from the data
set. This is a straightforward process but has the disadvantage of sometimes removing
potentially valuable data.

The second method is to refer back to the original image of every flagged feature
and to identify the problem that has resulted in flagging. If appropriate, the user can
perform a new feature extraction on the flagged feature to obtain a more reliable
measure of signal intensity. This procedure has the disadvantage of requiring time
and resources, and may not always be practical.

Background Subtraction

The second step in microarray data cleaning is to subtract the background signal from
the feature intensity. The background signal is thought to represent the contribution
of non-specific hybridisation of labelled target to the glass, as well as the natural fluo-
rescence of the glass slide itself. This procedure works well when the feature intensity
is higher than the background intensity. However, when the background intensity
is higher than the feature intensity, the result would be a negative number, which
would not be meaningful. There are three approaches that are used to deal with this
situation:

� Remove these features from the analysis. Since the feature intensity should be
higher than the background intensity, the unusually high background is taken
to represent a local problem with the array and so the intensity of the feature is
regarded as unreliable. This is the most common approach.

� Use the lowest available signal-intensity measurement as the background-
subtracted intensity – this will typically be the value 1.1 The idea behind this
is that if the background intensity is higher than the feature intensity, it repre-
sents a gene with no or very low expression, and so the lowest value available is
used.

� Use more sophisticated (Bayesian) algorithms to estimate the true feature in-
tensity, based on the assumption that the true feature intensity is higher than
the background intensity, and so the high background represents some type of
experimental error.2

Affymetrix Data

Data from Affymetrix GeneChips can suffer from a very similar problem, requiring sim-
ilar approaches to be resolved. Gene expression is determined by comparing the signal
intensity from hybridisation to probes complementary to the gene being measured

1 The readings from the scanner are 16-bit digital signals and so are integers; 0 cannot be used because
it is common to take the log of the signal at the next step.

2 A reference detailing such a method is given at the end of the chapter.
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with the signal intensity from hybridisation to probes that contain mismatches; the
signal from the mismatch probes are thought to represent cross-hybridisation. In ear-
lier versions of the Affymetrix software (Versions 4 and below), the gene expression
is calculated as a combination of the differences between the true probes and corre-
sponding mismatch probes. When the mismatch probes have higher intensity than
the complimentary probes, the software generates negative numbers, which are not
particularly meaningful. There are four possible approaches to handling genes with
negative intensities:

� Discard these genes from the analysis. The reasoning is that if the mismatch
probes have higher intensity than the complimentary probes, then the signal is
mostly cross-hybridisation and is unreliable.

� Replace the negative numbers with the smallest possible positive number, usu-
ally 1. The reasoning behind this is that the genes for which the mismatch signal
is less than the perfect probe signal are either not expressed, or expressed at very
low level, so we replace the signal with the lowest possible value.

� Use more sophisticated algorithms to estimate the true feature intensity, based
on the assumption that the true probe intensity is higher than the mismatch
intensity; hence, the effect seen is artifactual and represents some type of ex-
perimental error.3

� Affymetrix changed their algorithm in version 5 of their software so that it is no
longer possible to get negative numbers. Thus this problem is only present in
historic Affymetrix data that has not been reanalysed with their latest software.

Taking Logarithms

It is common practise to transform DNA microarray data from the raw intensities into
log intensities before proceeding with analysis.4 There are several objectives of this
transformation:

� There should be a reasonably even spread of features across the intensity range.
� The variability should be constant at all intensity levels.
� The distribution of experimental errors should be approximately normal.
� The distribution of intensities should be approximately bell-shaped.

It is usual in microarray data analysis to use logarithms to base 2. The reason is that
the ratio of the raw Cy5 and Cy3 intensities is transformed into the difference between
the logs of the intensities of the Cy5 and Cy3 channels. Therefore, 2-fold up-regulated
genes correspond to a log ratio of +1, and 2-fold down-regulated genes correspond to

3 At the time of writing this book, I am not aware of any published methods for performing such anal-
ysis with Affymetrix data. However, the Bayesian methodology applied to background subtraction
could be modified and also applied to this problem.

4 There are a number of alternative transformations that can be applied instead of logarithms, typ-
ically aimed at ensuring that the variability is constant at all intensity levels. A reference to one of
these methods is given at the end of the chapter.
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TABLE 5.1: Conversion from Log (to Base 2) to Raw Intensity and from Raw Intensity
to Log (to Base 2) Intensity

Log (to Base 2) Raw Raw Log (to Base 2)
Intensity Intensity Intensity Intensity

0 1 1 0
1 2 2 1
2 4 5 2.32
3 8 10 3.32
4 16 20 4.32
5 32 50 5.64
6 64 100 6.64
7 128 200 7.64
8 256 500 8.97
9 512 1,000 9.97

10 1,024 2,000 10.97
11 2,048 5,000 12.29
12 4,096 10,000 13.29
13 8,192 20,000 14.29
14 16,384 50,000 15.61
15 32,768

a log ratio of −1. Genes that are not differentially expressed have a log ratio of 0. These
log ratios have a natural symmetry, which reflects the biology and is not present in
the raw fold difference. For example, the fold differences of 2-fold up-regulated genes,
genes that are not differentially expressed, and 2-fold down-regulated genes are 2, 1
and 0.5, respectively. The logarithms to base 2 of a range of intensities are shown in
Table 5.1, and the log ratios for a range of fold differences are shown in Table 5.2.

Logarithms to base 2 are closely related to natural logarithms favoured by mathe-
maticians. Natural logarithms are implemented in Excel, R and on pocket calculators.
You can convert a natural logarithm to a logarithm to base 2 via Equation 5.1:

log (to base 2)x = log (natural)x
log (natural) 2

(Eq. 5.1)

TABLE 5.2: Conversion from Fold Ratios
to Log (to Base 2) Ratios

Fold Ratio Log (to Base 2)
Ratio Difference

4-fold down-regulated −2
3-fold down-regulated −1.58
2-fold down-regulated −1
1.5-fold down-regulated −0.58
No change 0
1.5-fold up-regulated 0.58
2-fold up-regulated 1
3-fold up-regulated 1.58
4-fold up-regulated 2
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Figure 5.1: Plots of Cy3 vs. Cy5 for data set 5A. Human foreskin fibroblasts have been infected
with Toxoplasma gondii for a period of 1 hour. A sample has been prepared, labelled with Cy5
(red), and hybridised to a microarray with approximately 23,000 features. The Cy3 (green) channel
is a sample prepared from uninfected fibroblasts. Because the infectious period is short, most genes
in this experiment are not differentially expressed. (a) Scatterplot of the (background-subtracted)
raw intensities; each point on the graph represents a feature on the array, with the x coordi-
nate representing the Cy3 intensity, and the y coordinate representing the Cy5 intensity. The graph
shows two weaknesses of the raw data that would have a negative impact on further data analysis:

1. Most of the data is bunched in the bottom-left-hand corner, with very little data in the majority
of the plot.

2. The variability of the data increases with intensity, so that it is very small when the intensity is
small and very large when the intensity is large.

(b) Scatterplot of the log (to base 2) intensities. This plot is better than (a). The data is spread evenly
across the intensity range, and the variability of the data is the same at most intensities. The genes with
log intensity less than 5 have slightly higher variability, but these genes are very low expressed and are
below the detection level of microarray technology.
The straight line is a linear regression through the data. The linear regression is not perfect (the data

appears to bend upwards away from the line at high intensities), but is approximately right. The inter-
cept is 1.4, and the gradient is 0.88. If the two channels were behaving identically, the intercept would
be 0 and the gradient would be 1. We conclude that the two Cy dyes behave differently at different
intensities; this could result from differential dye incorporation or different responses of the dyes to the
lasers.

(continued )
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Figure 5.1: (continued )

EXAMPLE 5.1 TAKING THE LOG OF TOXOPLASMA GONDII DATA (DATA SET 5A)

Fibroblasts taken from human foreskin have been infected with Toxoplasma gondii.
Samples from uninfected cells and cells treated withT. gondii for 1 hour are hybridised
to two channels of a microarray with approximately 23,000 features.5 The researchers
want to identify genes that have been differentially expressed.

The raw data (Figure 5.1a) do not satisfy the requirements for effective analysis.
Most of the features are in the bottom-left part of the graph; the variability increases
with intensity, and the distribution of the intensities is not bell-shaped but very heavily
right-skewed (Figures 5.2a and 5.2b).

The logged data (Figure 5.1b), however, do satisfy the requirements. The data are
well spread across the range of log intensity values the variability is approximately
constant at all intensities and would appear to be normally distributed (with the
exception of very low expressed genes, whose intensities are likely to be unreliable);
and the distribution of intensities (Figures 5.2c and 5.2d) are closer to being bell-
shaped (although these distributions are also slightly right-skewed).

5 The paper from which this data has been derived is given at the end of the chapter. The data is
available from the Stanford Microarray Database.
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Figure 5.2: Histograms of the raw and log Cy3 and Cy5 intensities. Histograms of the intensities
of the features for the human fibroblast data. (a) The raw intensities for the Cy3 channel; the data is
right-skewed, with the majority of features having low intensity and decreasing numbers of features
having higher intensity. (b) The raw intensities for the Cy5 channel; the pattern is the same as (a). (c)
The log intensities for the Cy3 channel; the intensities are closer to a bell-shaped normal curve (shown
as a dashed line). There is still a slight right skew, but the logged data is better for data analysis than
the raw data. (d) The log intensities for the Cy5 channel, along with a normal curve (dashed line). As
with (c), the intensities are approximately normal, with a slight right skew.
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SECTION 5.3 WITHIN-ARRAY NORMALISATION

Data set 5A is an example of a very typical class of microarray experiment. The ex-
perimenters are using the microarray to compare two different samples and identify
genes that are differentially expressed.

However, the two samples have been labelled with two different fluorescent dyes
in two separate chemical reactions, and their intensity is measured with two different
lasers operating at two different wavelengths. In addition, the features on the array are
distributed on different parts of the surface of the array. When we measure differen-
tial expression between the two samples, we need to ensure that our measurements
represent true differential gene expression, and not bias and error introduced by the
experimental method. We need to be able to compare the Cy3 and Cy5 intensities on
an equal footing – this is achieved by eliminating four sources of systematic bias:

� The Cy3 and Cy5 labels may be differentially incorporated into DNA of different
abundance.

� The Cy3 and Cy5 dyes may have different emission responses to the excitation
laser at different abundances.

� The Cy3 and Cy5 emissions may be differentially measured by the photomulti-
plier tube at different intensities.

� The Cy3 and Cy5 intensities measured on different areas on the array may be
different because the array is not horizontal and so the focus is different in
different parts of the array.

It is not possible to deconfound the first three sources of bias, and so they are com-
bined together. In this section we describe three methods of correcting for different
responses of the Cy3 and Cy5 channels:

� Linear regression of Cy5 against Cy3
� Linear regression of log ratio against average intensity
� Non-linear (Loess) regression of log ratio against average intensity

Spatial bias can be corrected separately, and we describe two methods to correct
for it:

� Two-dimensional Loess regression
� Block-by-block Loess regression

All of the methods described in this section rely on a core assumption: the majority
of the genes on the microarray are not differentially expressed. If this assumption
is true, then these methods are meaningful. However, if this assumption is not true,
then these methods may not be reliable, and a different experimental design and
normalisation method, such as using a reference sample, would be more appropriate.
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Linear Regression of Cy5 Against Cy3

The first and simplest method to check whether the Cy3 and Cy5 channels are behaving
in a comparable manner is via a scatterplot of the two channels (Figure 5.1b). If the Cy3
and Cy5 channels are behaving similarly, then the cloud of points on the scatterplot
should approximate a straight line, and the linear regression line through the data
should have a gradient of 1 and an intercept of 0. Variations from these values represent
different responses of the Cy3 and Cy5 channel:

� A non-zero intercept represents one of the channels being consistently brighter
than the other.

� A slope not equal to 1 represents one channel responding more strongly at high
intensities than the other.

� Deviations from a straight line represent non-linearities in the intensity re-
sponses of the two channels.

EXAMPLE 5.2 LINEAR REGRESSION APPLIED TO DATA SET 5A

A straight line is plotted through the scatterplot of log intensities of the human fibrob-
last data of data set 5A (Figure 5.1b). The intercept of the line is 1.41 and the gradient
is 0.88. This implies that at low intensities, the Cy5 channel gives a stronger response,
while at high intensities, the Cy3 channel gives a stronger response. The highest data
points are curving away from the straight line, so the relationship between the Cy3
and Cy5 channels is not completely linear.

The straight-line fit can be used to normalise the data. The procedure is straight-
forward:

1. Plot a Cy3 vs. Cy5 scatterplot.
2. Fit a regression line through the scatterplot and identify the gradient and

intercept.
3. Replace the Cy3 values with the fitted values on the regression line.

This method for normalisation works well for data where the linear fit is good and
is a reasonable preliminary method for visualising the data. However, there are two
disadvantages of this method:

� The human eye and brain are better at perceiving differences from horizontal
and vertical lines than from diagonal lines. Therefore it is not always easy to see
non-linearities in the data with this type of plot.

� The linear regression treats the Cy3 and Cy5 channels differently and would
produce a different result if Cy3 were plotted against Cy5.

Linear Regression of Log Ratio Against Average Intensity

An alternative and very useful approach to visualising and normalising the data is to
produce a scatterplot of the log ratio against the average intensity of each feature. Such
plots are sometimes calledMA plots in the microarray literature. In these plots, each
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point represents one feature, with the x coordinate taking the average value of the
Cy3 and Cy5 log intensities, and the y coordinate the difference between the log
intensities of the Cy3 and Cy5 channels (i.e., the log ratio). The MA plot derives its name
because the average intensity is sometimes called A, and the log ratio is sometimes
called M.

The MA plot is related to the scatterplot of the log intensities of the two channels; it
can be obtained from the scatterplot by rotating it by 45˚ and then scaling the two axes
appropriately. However, the MA plot is generally a more powerful tool for visualising
and quantifying both linear and non-linear differential responses of the Cy3 and Cy5
channels.

First, it is usually clearer if the two channels are responding differently or in a non-
linear fashion. If the two channels are behaving similarly, then the data should appear
symmetrically about a horizontal line through zero; any deviations from this horizon-
tal line represent different responses of the two channels. The human eye and brain
are better at processing horizontal lines than diagonal lines, so it is easier to visualise
differences between the channels by using MA plots than by using scatterplots.

Second, any linear or non-linear regression performed on the log ratio against
average intensity treats the two channels equally. Thus such regressions are more
robust and reproducible than performing regressions of one channel against the
other.

EXAMPLE 5.3 PLOT OF LOG RATIO AGAINST AVERAGE INTENSITY FOR DATA SET 5A

The log ratio for each feature is plotted against the average log intensity for all of the
features of data set 5A (Figure 5.3). The data are not symmetrical about a horizontal
line through zero: the Cy5 channel responds more strongly at low intensities, and the
Cy3 channel responds more strongly at high intensities. (This is the same conclusion
that we came to through using direct regression.) Because we assume that most genes

Figure 5.3: Plots of log ratio as a function of average intensity and linear normalisation. Scatter-
plots of the log ratio of the features as a function of the average intensity for the data from data set 5A.
Each point on the graph represents a different feature. The x coordinate is the average intensity of the
Cy3 and Cy5 channels; the y coordinate is the log of the fold ratio of Cy5 divided by Cy3 (equal to the
difference in the log intensities of Cy5 and Cy3). These plots show the average trend of the log ratio as
a function of intensity. These plots are sometimes known as MA plots; they are geometrically related to
the Cy5 vs. Cy3 scatterplots (Figure 5.1b) obtained by rotating the graph through 45˚ and then scaling
the two axes. (a) A straight line has been fitted through the data points, which demonstrates a clear
trend in the Cy5 and Cy3 responses. At low intensities, the Cy5 channel is responding more strongly,
while at high intensities, the Cy3 channel is responding more strongly. We assume that most genes are
not differentially expressed, so this line represents experimental artifact rather than differential expres-
sion. The log ratios can be linearly normalised by subtracting the fitted value on the straight line from
each log ratio. Although the straight-line fit is very good, it is not an exact fit to the centre of the data. At
high intensities, the data appears to flatten out, suggesting that a non-linear fit might give more reliable
results. (b) The data has been normalised to the regression line in (a) by subtracting the fitted value on
the line from the log ratio of each feature. The regression line is transformed to a horizontal line through
zero. The points with the highest intensities lie above the line.
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are not differentially expressed, we attribute this effect to experimental artifact and
normalise the data to remove this effect before testing for differentially expressed
genes.

Linear normalisation using the log ratio and average intensity works in a method
similar to linear regression on the Cy5 and Cy3 data. There are four steps:

1. Construct the average log intensity and log ratio for each feature.
2. Produce the MA plot.
3. Perform a linear regression of the log ratio on the average log intensity.
4. For each feature, calculate the normalised log ratio by subtracting the fitted

value on the regression from the raw log ratio.

EXAMPLE 5.4 LINEAR NORMALISATION OF FIBROBLAST DATA

Linear regression is applied to the MA plot of the fibroblast data of data set 5A (Figure
5.3a). The straight-line fit has intercept 1.31 and gradient −0.11; at low intensities,
the Cy5 channel is brighter than the Cy3 channel, while at high intensities, the Cy3
channel is brighter than the Cy5 channel. The fitted values on the straight line are
subtracted from the log ratios to produce normalised log ratios that are used for
identifying differentially expressed genes.

Nonlinear Regression of Log Ratio Against Average Intensity

If you look carefully at Figure 5.3a, you will see that the straight line does not perfectly fit
the cloud of data: at the highest intensities, the line appears to be too low. It is common
with microarray data that the relationship between the Cy3 and Cy5 channels is non-
linear; when that is the case, linear regression may not produce the best answers, and
some form of non-linear regression may be more suitable.

The most commonly used method for non-linear regression with microarray data
is called Loess regression (and sometimes called lowess regression). Loess stands for
locallyweighted polynomial regression. It works by performing a large number of local
regressions in overlapping windows along the length of the data (Figure 5.4a) and then
joining the regressions together to form a smooth curve (Figure 5.4b).

Loess regression is a relatively advanced statistical technique and is generally avail-
able in advanced statistics packages such as R or Matlab. However, it is straightforward
to use with a basic working knowledge of R, and there are also two packages written
for R specifically for analysing microarray data that use Loess to perform normalisa-
tion.6 Loess regression has also been implemented in many commercially available
microarray data analysis packages.

Loess normalisation is performed in four simple steps:

1. Construct the average log intensity and log ratio for each feature.
2. Produce the MA plot.

6 URLs for these packages are given at the end of the chapter.
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(a) (b)

Figure 5.4: Loess normalisation. (a) Loess regression works by performing a large number of local
regressions in overlapping windows across the whole range of the data set. The regression curve is
usually either a straight line or a quadratic curve. (The default R implementation is a quadratic curve.)
Each regression results in a central point and regression line or curve about that point. (b) The points
and curves from the local regressions are combined to form a smooth curve across the length of the
data set.

3. Apply the Loess regression to your data.
4. For each feature, calculate the normalised log ratio by subtracting the fitted

value on the Loess regression from the raw log ratio.

EXAMPLE 5.5 NON-LINEAR REGRESSION APPLIED TO DATA SET 5A

Loess regression is applied to the human fibroblast data set 5A (Figure 5.5a).7 The
curve fits the data very well. The normalised data (Figure 5.5b) are balanced about
zero and are ready for analysis for differentially expressed genes.

Although Loess is an advanced statistical technique, it is important to remember
that it is no more than a computational method for drawing a best-fit curve through
a cloud of points. There is no conceptual or theoretical underpinning to the curve
produced by Loess; it is only a scaling of the data.

Loess regression has a number of parameters, which can be set by the user, whose
values will have an impact on the way in which the curve fits the data. The most
important of these is the size of the window, which determines the smoothness of the
regression. If the window is too small, the curve will be too sensitive to local ups and

7 The R statistical software is very well equipped to perform Loess regression. It can be found in the
modregpackage. Suppose the fibroblast data set were in a data frame calledfibroblast, with variables
average and lratio containing the average log intensity and log ratio. Then the R commands to apply
Loess normalisation would be:

attach(fibroblast)
lmodel <- loess(lratio∼average)
fibroblast$normlratio <- lratio – predict.loess(lmodel,

average)
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downs in the data, and will be very “wiggly” (Figure 5.6a). If the window is too large,
the curve will be too “stiff” and will be unable to fit the data effectively (Figure 5.6b).

Correcting for Spatial Effects

In some microarray experiments there is a spatial bias of the two channels: in some
regions of the array the Cy3 channel is brighter, and in other regions of the array the
Cy5 channel is brighter. This can result from the array not being completely flat or
horizontal in the scanner. The depth of focus of the two lasers is different – depth
of focus is proportional to wavelength, and so is greater for Cy5 than for Cy3. If the
array is not horizontal, then it is possible that in some areas of the array both channels
might be in focus, while in other areas of the array the Cy5 channel might be in focus
but the Cy3 channel might be slightly out of focus. This can affect the log ratios of the
data, with some regions of the array having generally positive log ratios, and other
regions having generally negative log ratios.

Where this happens, it is possible to correct for spatial bias using two different nor-
malisation techniques: two-dimensional Loess regression and block-by-block Loess
regression.

Two-Dimensional Loess Regression

This is generally the better method for correcting spatial bias on an array. The two-
dimensional Loess works in a similar way to one-dimensional Loess, but instead of
fitting a curve, it fits a two-dimensional polynomial surface to the data. To perform
a two-dimensional Loess regression on microarray data, you would perform the fol-
lowing steps:

1. Calculate the log ratio for each feature on the array.
2. Produce a false-colour plot of the log ratios of the features as a function of the

x and y coordinates of the features on the array.
3. Perform a two-dimensional Loess fit of the log ratios as a function of the x and

y coordinates of the features.
4. For each feature, calculate the normalised log ratio by subtracting the fitted

value on the Loess surface from the raw log ratio.

EXAMPLE 5.6 DATA SET 5B – SPATIAL BIAS ON A KIDNEY–LIVER ARRAY

In a microarray experiment to look at the difference between gene expression in
kidney and liver of mice, kidney and liver samples from the same mouse have been

Figure 5.5: Loess normalisation. (a) The scatterplot of the fibroblast data is plotted with a non-linear
Loess fit through the data. The non-linear curve appears to fit the shape of the data better than the
linear regression. The log ratio can be non-linearly normalised by subtracting the fitted value on the
Loess curve from the data. This method works well for data where there is a non-linear relationship
between the responses of the Cy3 and Cy5 channels. (b) The fibroblast data after Loess normalisation.
The horizontal line through zero corresponds to the curved line in (a). The horizontal line appears to go
through the centre of the cloud of data very well.
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prepared with Cy3 and Cy5 dyes and hybridised to a microarray.8 The data from the
array show Cy3 brighter on the top-left corner and Cy5 brighter in the bottom-right
corner (Figure 5.7a)

To correct for this bias, a two-dimensional Loess surface was fitted to that data (Fig-
ure 5.7b).9 From the plot, it is possible to see the contours representing the differential
gradient of the Cy3 and Cy5 intensities across the arrays from top left to bottom right.
The fitted values from the Loess surface are subtracted from each of the features to
produce a normalised data set with no spatial bias (Figure 5.7c).

Block-by-Block Loess Regression

A second method for correcting for spatial bias on the array is to perform one-
dimensional Loess regression on the log ratio as a function of average log intensity, but
instead of applying this method to the whole array (as done earlier), apply the method
to each grid on the array separately. This method works well when bias is introduced
from the different pins on the spotting robot, and the Cy3 and Cy5 intensities behave
differently for different pins.

EXAMPLE 5.7 BLOCK-BY-BLOCK NORMALISATION ON DATA SET 5B

Block-by-block normalisation is applied to the kidney–liver data set 5B. There are 48
grids on the array (12 × 4). The log ratio is normalised to the average intensity using
a separate Loess regression for each grid (Figures 5.8a and 5.8b). After normalisation,
there is no spatial bias on the array (Figure 5.8c). There are two disadvantages with this
method. First, the number of data points on each grid can potentially be quite small,
and it is possible that the majority of the features within an intensity range could be
differentially expressed. This would contravene the requirement that most genes are
not differentially expressed. The Loess regression would fit the differentially expressed
genes, and so important information would be lost during the normalisation process.

8 These data were obtained privately from the Microarray Facility at the Mammalian Genetics Unit
in the Medical Research Council Laboratories at Harwell in Oxfordshire, UK.

9 Two-dimensional Loess regression can be performed in R using the same Loess function in the
modreg package as is used for one-dimensional Loess regression. Suppose the kidney–liver data is
held in a data frame called nonflat, with variables x, y and lratio corresponding to the x coordinate,
y coordinate and log ratio of each of the features. Then to perform the two-dimensional Loess
normalization, use the following commands:

attach(nonflat)
lmodel <- loess(lratio∼x+y)
nonflat$lrationorm <- lratio – predict.loess(lmodel,nonflat)

Figure 5.6: Robustness of Loess regression. Loess regression is applied to the fibroblast data using
different window sizes. (a) The window for the Loess regression is too small. The Loess curve follows
local features of the data too closely and as a result is very “wiggly.” (b) The window for the Loess
regression is too large. The Loess curve is too “stiff”and does not follow the data well; the Loess curve
falls below the group of high expressed genes.
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Second, it is common for spatial bias to arise from the array not being horizontal in
the scanner, which may have no relationship to the variabilities between different pins.

SECTION 5.4 BETWEEN-ARRAY NORMALISATION

Section 5.3 described normalisation methods that can be used to compare the Cy3
and Cy5 channels of a single array. This section looks at normalisation methods
that allow you to make comparisons between samples hybridised to different arrays,
which could be either two-colour arrays or Affymetrix arrays. In such experiments,
each hybridisation reaction may be slightly different, and so the overall intensities of
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Figure 5.7: Spatial bias on a microarray and two-dimensional Loess regression. (a) False-colour
representation of the log ratios of a microarray, with mouse kidney in Cy3 and liver from the same mouse
in Cy5 (data set 5B). Each spot represents a feature. The x and y coordinates of each spot correspond
to the x and y coordinates of the feature on the array. The colour of the spot represents the log ratio
(Cy5/Cy3) of the feature, with red spots having a positive log ratio and green spots having a negative log
ratio. There is a strong spatial bias on the array, with green spots in the top-left-hand corner and red
spots in the bottom-right-hand corner. The areas of the array with missing spots represent features that
have been flagged by the image-processing software, or features with a higher background than signal
that have been removed from the data set. (b) The same data, but with the fit of a two-dimensional
Loess surface to the log ratios superimposed as contours. The contours follow the colour trend, going
from negative at top left to positive at bottom right. (c) False-colour plot of the normalised log ratio
values of the features. These are calculated by subtracting the fitted values of the Loess surface from
the raw log ratios. There is no spatial bias on the normalised data. (Please see also the color section at
the middle of the book.)

(continued )
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Figure 5.7: (continued )
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different arrays may be different. In order to be able to compare the samples hybridised
to different arrays on an equal footing, it is necessary to correct for the variability
introduced by using multiple arrays.

Visualising the Data: Box Plots

The box plot is a method for visualising several distributions simultaneously. It is
an excellent method for comparing the distributions of log intensities or log ratios
of genes on several microarrays. A box plot shows a distribution as a central box
bracketed by horizontal lines known as whiskers. The line through the centre of the
box represents the mean of the distribution. The box itself represents the standard
deviation of the distribution. The horizontal lines bracketing the box represent the
extreme values of the distribution.10

EXAMPLE 5.8 BOX PLOTS OF DIFFUSE LARGE B-CELL LYMOPHOMA PATIENTS
(DATA SET 5C)

Samples have been taken from 39 patients suffering from diffuse large B-cell lym-
phoma (DLBL) and hybridised to microarrays, with each array containing one sample
in the Cy5 channel and a reference sample in the Cy3 channel.11 Figure 5.9a shows box
plots of the log ratios of the patient samples to the reference samples for five of the
DLBL patients. The box plot allows you to compare the distributions of the log ratios
in the different patients. For example, patient 14 has a lower set of log ratios than the
other patients, and patient 13 has a wider range of log ratios than the other patients.

There are three standard methods for normalising data similar to data set 5C so
that the arrays can be compared on an even footing. They all make the same central
assumption: the variations in the distributions between arrays are a result of exper-
imental conditions and do not represent biological variability. If this assumption is
not true, then these methods are not appropriate. The three methods are

� Scaling
� Centering
� Distribution normalisation

10 The box plot function in R is slightly different and plots the median of the distribution at the centre
of each box, and the size of the box represents the median absolute deviation from the median.
These are robust, non-parametric equivalents of the mean and standard deviation.

11 A reference to the paper from which these data derive is given at the end of the chapter.

Figure 5.8: Block-by-block regression. Block-by-block regression is performed by applying one-
dimensional Loess normalisation to the features in each grid on the array separately. The array in data
set 5B has 48 grids. (a) MA plot of the features in the top-left-hand grid; most of the log ratios are
negative, corresponding to this portion of the array being green. The Loess fit appears to be good, so
these features will be normalised well. (b)MA plot of the features in the bottom-right-hand grid; most of
the log ratios are positive, corresponding to this portion of the array being red. There is a single feature
that is low expressed but with very high log ratio. Because there are not enough data points, the Loess
curve has fitted this point and so it will appear that it is not differentially expressed. This is a problem
with block-by-block Loess normalisation. (c) The whole array has been normalised using block-by-block
normalisation. The spatial bias has been eliminated. (Please see also the color section at the middle of
the book.)
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Figure 5.9: Scaling, centering and distribution normalisation. Different methods that allow the com-
parison of samples on many arrays for data analyses such as cluster analyses (Chapter 7) and classifi-
cation analyses (Chapter 8). The data in this figure are five patients suffering from diffuse large B-cell
lymphomas (data set 5C). (a) Box plot of the raw log ratios of the five patients. The distribution of log
ratios for all patients is shown on one plot so they can be easily compared. The line at the center of each
box represents the mean (or median) value of the distribution; the size of the box represents the stan-
dard deviations (or median absolute deviation from the median) of the distribution; the two horizontal
lines bracketing the box (sometimes called whiskers) represent the extreme values of the distribution.
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Figure 5.9: (continued ) In this plot, the five patients all have different means, standard deviations and
distributions. (b) The data has been scaled by subtracting the mean of the distribution from each of the
log ratio values of each patient. The means of the distributions are all equal to zero. (c) The data has
been centered by subtracting the mean of the distribution and dividing by the standard deviation. The
centered distributions for each patient have mean 0 and standard deviation 1. Centering is useful when
using correlation as a distance measure (Chapter 7). (d) The data has been distribution normalised so
that each patient has the same set of measurement values; the distributions for all five patients are
identical.
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Scaling

Data is scaled to ensure that themeans of all the distributions are equal (Figure 5.9b).
The method is simple: subtract the mean log ratio (or log intensity) of all of the data on
the array from each log ratio (or log intensity) measurement on the array. The mean
of the measurements on each array will be zero after scale normalisation.

An alternative to using the mean is to use the median; this provides a more robust
measure of the average intensity on an array in situations where there are outliers or
the intensities are not normally distributed.

Centering

Data is centered to ensure that the means and the standard deviations of all of the
distributions are equal (Figure 5.9c). The method is similar to scaling: for each mea-
surement on the array subtract the mean measurement of the array and divide by
the standard deviation. Following centering, the mean of the measurements on each
array will be zero, and the standard deviation will be 1.

Centering is a very commonly used method for comparing multiple arrays. It is
particularly useful when calculating the Pearson correlation coefficient of a large
number of data sets prior to cluster analysis, because it ensures that the correla-
tion coefficient can define a distance metric on the data. This is discussed in full in
Chapter 7.

An alternative to using the mean and standard deviation is to use the median and
median absolute deviation from the median (MAD). This has the advantage of being
more robust to outliers than using the mean and standard deviation, but has the
disadvantage of not producing a distance metric when using Pearson correlation.

Distribution Normalisation

Data is distribution normalised to ensure that the distributions of the data on each of
the arrays are identical. The methodology is slightly more complex:

1. Center the data.
2. For each array, order the centered measurements from lowest to highest.
3. Compute a new distribution whose lowest value is the average of the values of

the lowest expressed gene on each of the arrays; whose second-lowest value
is the average of the second-lowest values from each of the arrays; and so on
until the highest value is the average value of the highest values from each of
the arrays.

4. Replace each measurement on each array with the corresponding average in
the new distribution. For example, if a particular measurement is the 100th
largest value on the array, replace it with the 100th largest value in the new
distribution.
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Following distribution normalisation, the measurements of each array will have
mean 0, standard deviation 1, and identical distributions to all other arrays.

Distribution normalisation is an alternative to centering as a method for normal-
ising data before applying a cluster analysis (Chapter 7) or classification analysis
(Chapter 8). It is useful where the different arrays have different distributions of val-
ues. However, centering is a simpler method and is the most commonly used method
for microarray normalisation.

EXAMPLE 5.9 NORMALISING DATA SET 5C

The DLBL data can be normalised using all three methods. Scaling the data ensures
that the means of the log ratios of the five patients are all zero (Figure 5.9b). However,
the standard deviations are quite different; for example, patient 13 has a particularly
large standard deviation. Centering the data ensures that the standard deviations are
all equal to 1 (Figure 5.9c). However, the distributions are not identical; for example,
patient 14 has some large negative log ratios. Distribution normalisation ensures that
all arrays have identical distributions (Figure 5.9d).

KEY POINTS SUMMARY

� Normalisation can remove unwanted systematic variability from microarray data.
� Visualise the data with scatterplots and MA plots.
� Use within-array normalisation to remove effects of dye bias and spatial bias.
� Use between-array normalisation to enable comparison of multiple arrays.

RESOURCES

The data used in this chapter has come from a number of papers.

Data Set 5A

Blader, I.J., Manger, I.D., and Boothroyd, J.C. 2001. Microarray analysis reveals pre-
viously unknown changes in Toxoplasma gondii-infected human cells. Journal of
Biological Chemistry 276: 24223–31.

Data Set 5B

Web site of the Microarray Facility at the Mammalian Genetics Unit in the Medical Research

Council Laboratories in Harwell, Oxfordshire. Data set 5B was obtained privately from this

laboratory.

http://www.mgu.har.mrc.ac.uk/microarray/
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Data Set 5C

Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick,
J.C., Sabet, H., Tran, C., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson,
J. Jr., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C.,
Weisenberger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R.,
Byrd, J.C., Botstein, D., Brown, P.O., and Staudt, L.M. 2000. Distinct types of dif-
fuse large B-cell lymphoma identified by gene expression profiling. Nature 403:
503–11.

Further Reading

Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., and Speed, T. 2002. Nor-
malisation for cDNA microarray data: A robust and composite method addressing
single and multiple slide systematic variation. Nucleic Acids Research 30: e15.

Excellent paper describing normalisation techniques, including the use of MA plots and

block-by-block normalisation.

Quackenbush, J. 2002. Microarray data normalization and transformation. Nature
Genetics 32 Suppl 2: 496–501.

Recent review of normalization techniques.

Kooperberg, C., Fazzio, T.G., Delrow, J.J., and Tsukiyama, T. 2002. Improved back-
ground correction for spotted DNA microarrays. Journal of Computational Biology
9: 55–66.

Description of a method that allows background subtraction where the background is

higher than the feature intensity.

Huber, W., Von Heydebreck, A., Sultmann, H., Poustka, A., and Vingron, M. 2002. Vari-
ance stabilization applied to microarray data calibration and to the quantification
of differential expression. Bioinformatics 18 Suppl 1: S96–S104.

Alternative to log transformation.

Useful Normalisation Resources

http://www.r-project.org/

The homepage for R, a free statistics package which is very similar to S. This is available

for Unix, Windows and Macintosh, and has a wide range of statistics and graphing func-

tionality. Unlike S+ or SPSS, it does not have a graphical user interface and is operated

via commands and scripts. A number of groups have written packages for microarray

normalization and analysis in R.
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http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html

Statistics for Microarray Analysis. A package for R written by Terry Speed and co-workers

at the University of Berkeley including many methods for microarray normalization.

http://people.cryst.bbk.ac.uk/wernisch/yasma.html

Yasma (Yet Another Statistics for Microarray Analysis). A different package for R written by

Lorenz Wernisch and co-workers at Birkbeck College, London.



CHAPTER SIX

Measuring and Quantifying Microarray Variability

SECTION 6.1 INTRODUCTION

Chapter 5 described a number of methods to correct for unwanted systematic vari-
ability either within an array or between different arrays. In this chapter, we describe
methods to measure and quantify the random variabilities introduced by the microar-
ray experiment. The common sources of variability (Figure 6.1) are

� The variability between replicate features on the same array
� The variability between two separately labelled samples hybridised to the same

array
� The variability between samples hybridised to different arrays
� The variability between different individuals in a population hybridised to dif-

ferent arrays

Estimates of these variabilities are essential to gaining an understanding of how
well the microarray platform you are using is performing. They are also important
parameters for determining the number of replicates required for a microarray exper-
iment – a topic that is discussed in full in Chapter 10.

The first two levels of variability – between replicate features or samples hybridised
to the same array – are meaningful only for two-colour arrays. However, the second two
levels of variability – between hybridisations to different arrays and between individu-
als in a population – are meaningful both for two-colour arrays and Affymetrix arrays.

SECTION 6.2 MEASURING AND QUANTIFYING
MICROARRAY VARIABILITY

The variabilities between different features on an array, between two samples hy-
bridized to the same array or between samples hybridized to different arrays are all
introduced by the microarray experimental process. In contrast, the variation between
individuals in the population is independent of the microarray process itself. Exper-
imental variability is measured with calibration experiments; population variability
is measured with pilot studies.

Calibration Experiments

The aim of a calibration experiment is to identify and quantify the sources of variability
in your microarray experimental platform. The information might then be used to

100
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Figure 6.1: Sources of variability in a microarray
experiment. There are several levels of variability
in the measured gene expression of a feature. At
the highest level, there is biological variability in the
population from which the samples derive. At an ex-
perimental level, there is variability between prepa-
rations and labellings of the sample, variability be-
tween hybridisations of the same labelled sample to
different arrays, and variabilities between the signal
on replicate features on the same array. The mea-
sured gene expression includes the true gene expres-
sion, together with contributions from each of these
variabilities.

improve your experimental procedures, or to select appropriate levels of technical
replication for quality control. It is important to perform a calibration experiment

� After setting up your laboratory, and before undertaking any microarray
projects;

� After any changes in laboratory apparatus, protocols or staff; and/or
� On a regular basis to ensure continued quality.

A typical calibration experiment would include

� An array design with several replicate features for each gene; ideally, these fea-
tures should be in different locations on the array;

� Producing a sample and labelling it with both Cy3 and Cy5; and/or
� Co-hybridising the sample to several arrays.

In this way, it will be possible to measure the variabilities introduced by all three
microarray-specific sources.

Pilot Studies

The aim of a pilot study is to provide an approximate guide to the level of variability
in a population prior to performing a large-scale experiment. They are typically used
before performing a power analysis to compute the number of biological replicates
needed in an experiment (Section 10.4).

EXAMPLE 6.1 PILOT STUDY

Breast cancer patients are treated with a 16-week course of doxorubicin chemother-
apy. Samples will be taken before and after chemotherapy and hybridised to microar-
rays. We want to identify genes that are differentially expressed as a result of this
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chemotherapy. In order to help design a large-scale experiment, we perform a pilot
study on five patients to identify the level of population variability.

Quantifying the Variabilities

In statistics, it is typical to represent the variability of a population as a standard de-
viation. In microarray experiments, the measured expression (or relative expression)
of a gene on a particular feature can be thought of as the true gene expression in
the individual or sample, added to which are components for each of the sources of
experimental variability (Figure 6.1). Each component of variability can be thought of
as a separate distribution with its own standard deviation, and we use the calibration
experiments and pilot studies to measure these standard deviations.

For example, if we consider an array with several replicate features for each gene,
then we can calculate the standard deviation of the population of replicate measure-
ments from the differences between the replicate measurements of each gene and
the average of the replicates. The collection of these differences for all genes can be
thought of as a sample from a random variable representing the differences between
replicate features. The sample standard deviation would thus be an estimate of the
standard deviation of this random variable and would be a measure of the variabil-
ity between replicates. In this example, we are assuming that the variability between
replicate features is the same for all genes. Later, we will see examples where this is
not the case.

Log-Normal Distribution

In microarray experiments, it is common to model the distribution of errors at each
of the four levels of variability using a log-normal distribution. One advantage of
making a log-normal assumption is that it allows the different levels of variability to
be expressed as a percentage known as the coefficient of variability. The coefficient
of variability is equal to the standard deviation of a set of measurements divided by
the mean. If the variability in a microarray data set follows a log-normal distribution,
then the standard deviation of the errors in the raw intensities is proportional to
their mean (i.e., the raw gene expression), and so the coefficient of variability is well
defined.

In the log-normal model, the errors in the logs of the intensities – and hence
also the errors of the log ratios – follow a normal distribution. This model is only
approximately correct for real microarray data. We will see in the examples that follow
that the distribution of errors tends to have a sharper peak and heavier tails than a
normal distribution. This means that there are many features with smaller errors, and
a small number of features with much larger errors than predicted by the log-normal
model.

The use of a log-normal distribution also makes the assumption that the magni-
tude of the errors in the log intensities is approximately the same for features of all
intensities. This is approximately true for some microarray data, but we will also show
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several examples where the errors are larger for low-intensity features than for high-
intensity features. In such cases, it is possible to resolve this problem by partitioning
the data into low- and high-intensity features and to provide more than one measure
of variability for features with different ranges of expression.

If we use the log-normal model, then the coefficient of variability (v) relates to the
standard deviation of the normally distributed errors in the logged measurements (σ )
via the following formula:

v =
√

(exp(σ 2) − 1) (Eq. 6.1)

This equation depends on the use of natural logarithms, so if you are using logs to
base 2, the standard deviation must be multiplied by ln(2) (approximately 0.69) to
obtain the correct value of σ for Equation 6.1.

Method for Measuring Variability

We discussed four levels of variability: between features, hybridizations, arrays and
individuals. We will now describe a method for calculating the standard deviations
for each of these levels of variability. There will be slightly different considerations in
each case; the general method is as follows:

1. For each set of replicates (features, hybridisations or individuals), calculate the
mean of the replicates.

2. For each replicate, calculate the deviation from the mean by computing the
difference between the intensity of the replicate and the mean of the set of
replicates.

3. Produce MA plots of the deviations against the mean to check that the variability
is independent of intensity.

4. If desired, an appropriate linear or non-linear normalisation can be applied to
the deviations. (See Section 5.3).

5. Calculate the standard deviation of the error distribution using all of the repli-
cates.1 If the variability depends on the intensity, you may wish to partition the
data into different intensity ranges and calculate a standard deviation for each
partition.

6. If the log-normal assumption is true, then the deviates should be distributed
as a normal distribution. This can be checked by plotting a histogram of the
deviates.

7. Convert the standard deviation to a percentage coefficient of variability by
multiplying by ln(2) and applying Equation 6.1.

1 Although the full set of replicate deviates are not independent random variables, the sample stan-
dard deviation is still an unbiased estimator of the population standard deviation and so this pro-
cedure is statistically meaningful. However, it would not be meaningful to perform a statistical test
for normality of the distribution of all replicate deviates.
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Figure 6.2: Dot plots of duplicate variability. Dot plots that show the relationship between the repli-
cate features on an array from data set 6A. The array has been made with 6,000 genes spotted in
duplicate. A sample of mouse kidney was prepared and labelled twice, once with Cy3 and once with
Cy5, and both labelled samples were hybridised to the array. This allows for the estimation of variability
between duplicate spots, and between the two labelled samples. Each point on the figure represents
a pair of duplicate features for a different gene. The x coordinate is the average log intensity of the
duplicate features (to base 2). The y coordinate is the difference between the log intensity of the first
replicate and the average intensity. (a) The duplicates from the Cy3 channel on the array. There are two
phenomena to observe. First, at low intensities, the cloud of points is generally negative, implying that
the first replicate is less intense than the second replicate of the same gene. There are three reasons
why this could be the case: (i) spatial bias on the array; (ii) if the replicates are spotted with different
pins, there could be pin-to-pin variability; (iii) if the replicates are spotted with the same pin, more fluid
could be released from the pin the second time it is applied to the glass. These effects can be normalised
using Loess regression (Section 5.3). Second, although the variability of the duplicates is reasonably
constant, it decreases with intensity. It might be meaningful to report two different coefficients of vari-
ability between the duplicates, one for low expressed genes [log(2) intensity less than 13], and one for
high expressed genes [log(2) intensity greater than 13]. (b) A similar plot but for the Cy5 channel on
the array. This plot is very similar to (a), but with slightly greater variability.

Variation Between Replicate Features on an Array

The variation between replicate features on an array can be measured in any experi-
ment for which replicate features have been used.

EXAMPLE 6.2 CALCULATING THE VARIABILITY BETWEEN REPLICATE FEATURES
USING A SELF–SELF-HYBRIDISATION (DATA SET 6A)

In an experiment to determine the quality of a microarray facility, RNA was ex-
tracted from mouse kidney and labelled twice, once with Cy3 and once with Cy5.
The two labelled samples were hybridised to an array with 6,000 genes spotted in
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Figure 6.3: Distributions of duplicate variability. Distributions of the variability between the dupli-
cates from data set 6A are shown as histograms, with the curve showing a fitted normal distribution
with the same mean and standard deviation. (a) Histogram for the Cy3 channel. The variability is bell-
shaped. The normal approximation is reasonable but not exact: there are more features with smaller
variability than with a normal distribution and, correspondingly, there are more outlier features with
greater variability than a normal distribution (this is difficult to see on this plot). It is common to refer
to this phenomenon as the distribution having heavy tails. (b) Histogram for the Cy5 channel, showing
the same properties as (a).

duplicate.2 The researchers want to calculate the variability between the duplicate
spots.

The variability between the duplicate spots is calculated separately for the two
channels. The MA plots (Figure 6.2) show that while the variability is approximately
constant, the variability is in fact smaller for the highest expressed genes. In addition,
the plot is not centered on zero, indicating a systematic bias between the two repli-
cates; this can be corrected using Loess normalisation (Section 5.3). The normalised
error distributions are approximately but not exactly normal, with the errors having
a sharper peak and longer tails than a normal distribution (Figure 6.3).

In this example, we could calculate standard deviations and coefficients of vari-
abilities either for the whole data set, or partition the data into low-expressed
and high-expressed genes and calculate separate standard deviations for the two
partitions. When using all of the data, the standard deviations are 0.25 for the Cy3

2 This data was obtained privately from the Microarray Facility at the Mammalian Genetics Unit in
the Medical Research Council Laboratories at Harwell in Oxfordshire, UK.
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channel and 0.27 for the Cy5 channel. These can be converted to coefficients of vari-
ability by multiplying each standard deviation by ln(2) and applying Equation 6.1; they
correspond to coefficients of variability of 17 and 19%, respectively. If we partition the
data into low expressed genes with log (to base 2) intensity less than 13, and high
expressed genes with log intensity greater than 13, then the coefficients of variability
for the low expressed genes are 18 and 19% in the Cy3 and Cy5 channels, respectively,
and for the high expressed genes are 14% in both channels.

Variability Between the Cy3 and Cy5 Channels

The variability between two samples hybridised to the same array is best measured
with a self–self-hybridisation. The same biological sample is labelled twice, once with
Cy3 and once with Cy5, and we measure the variability between the two sets of mea-
surements.

This variability is different from the systematic bias between the Cy3 and Cy5 chan-
nels discussed in Section 5.3. The systematic bias represents a consistent difference
introduced by the experimental apparatus and is removed using the normalisation
methods of Section 5.3. But after this bias has been removed, there remains random
variability between the two sets of measurements in the two channels. This is the
variability we measure here.

EXAMPLE 6.3 CALCULATING THE VARIABILITY BETWEEN THE CY3
AND CY5 CHANNELS

The self–self-hybridisation of data set 6A can be used to calculate the variability be-
tween the two labelled samples hybridised to the array. The same procedure is ap-
plied to the average measurements of the duplicate features in each of the Cy3 and
Cy5 channels, which are then normalised with Loess regression. In this example, the
variability is approximately constant and approximately normally distributed. The
standard deviation of the error distribution is approximately 0.18 (in log to base 2),
which corresponds to a coefficient of variability of 12%.

Variability Between Hybridisations to Different Arrays

The variability of hybridisations to different arrays contains two components: a vari-
ability among the arrays themselves (in relation to their production), and a variability
among different hybridisation reactions. It is not possible to measure the components
separately (they are what is known as confounded variables; this is discussed in depth
in Chapter 10), so the two variabilities are combined into a single measurement.

In order to calculate this variability, you will need to hybridise the same labelled
sample to a number of different arrays. In experiments that have used a reference
sample, the reference sample on the different arrays can serve to estimate this
variability.
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Figure 6.4: Variability between hybridisations. Figures to visualise the variability between hybridisa-
tions of the same reference sample to 20 different arrays in data set 6B. The reference sample intensities
on each array have been centered so that they have mean 0 and standard deviation 1. (a) Dot plot of
the variabilities. Because of the large volume of data in this example, the dot plot shows a randomly
selected sample of replicates representing 10% of the original data. The variability is fairly constant
across the range of intensities. (b) Histogram of the error distribution. The distribution is closer to a
normal distribution than the example of duplicate features, but there are duplicates with smaller vari-
ability than that predicted by a normal distribution, indicating that there are also heavy tails of outlier
replicates.

EXAMPLE 6.4 CALCULATING THE VARIABILITY BETWEEN REFERENCE SAMPLE
HYBRIDISATIONS TO MULTIPLE ARRAYS (DATA SET 6B)

In an investigation of breast cancer chemotherapy, samples were taken from 20 pa-
tients before and after treatment with doxorubicin chemotherapy.3 The 20 samples
before treatment were labelled with Cy5 and hybridised to 20 different arrays; each
array was hybridised with the same reference sample that was labelled with Cy3. We
want to calculate the variability between hybridisations of the reference sample to
different arrays.

We restrict the analysis to 6,350 genes for which all data is present in the data set. The
intensities of the reference samples on each array are centered (Section 5.3) to allow
for comparison between the arrays. We follow the aforementioned procedure and
produce an MA plot for all of the data (Figure 6.4a). The standard deviation is fairly
constant at all intensity levels, so it is meaningful to talk about a single coefficient
of variability. The histogram of the error distribution (Figure 6.4b) shows that the
distribution is approximately normal.

3 A reference to the paper from which this data set derives is given at the end of the chapter.
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The standard deviation of the error distribution is 0.31. We multiply this by ln(2) and
apply Equation 6.1 to obtain a coefficient of variability of 22%. So in this experiment,
there is 22% variability between the same labelled samples hybridised to different
arrays.

Variability Between Individuals

The variability between individuals in a population is fundamentally different from
the three other sources of variability described earlier. The other sources of variability
are all introduced as part of the experimental process. There is no inherent interest in
those variabilities, and any improvements in experimental practises that reduce those
variabilities would be an advantage. Population variability, on the other hand, comes
from the biological system being studied. In many experiments, we are explicitly
interested in the variability between individuals, because it could be important in
disease and treatment outcomes. However, the measurement of variability between
individuals is performed in the same way as for the other variabilities and can also be
expressed as a coefficient of variability.

EXAMPLE 6.5 CALCULATING THE VARIABILITY BETWEEN INDIVIDUALS
IN DATA SET 6B

Using data set 6B we can calculate the variability of gene expression in the population
of breast cancer patients. We perform the same procedure, but instead of looking
at the reference sample, we look at the log ratio of each gene relative to the refer-
ence sample as a measurement of gene expression. The log ratios on each array are
centered; for each gene, calculate the average log ratio of the 20 patients. For each
gene in each patient, subtract the centered log ratio from the average log ratio. The
standard deviation of this distribution is 0.60. This corresponds to a coefficient of
variability of 44%.

It is very common for the differences between individuals to be the largest source
of variability. This is one of the reasons why it is essential to replicate experiments
with several individuals. The number of individuals needed depends on the type of
experiment being performed as well as the level of population variability. Methods to
estimate how many replicates to use are discussed in full in Chapter 10.

KEY POINTS SUMMARY

� Microarray experiments have several sources of variability.
� Variability can be measured and quantified via calibration experiments and pilot

studies.
� With a log-normal assumption, variability can be expressed as a percentage coef-

ficient of variability.
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RESOURCES AND FURTHER READING

Data Set 6A

http://www.mgu.har.mrc.ac.uk/microarray/

Web site of the Microarray Facility at the Mammalian Genetics Unit in the Medical Research

Council laboratories in Harwell, Oxfordshire. Data set 6A was obtained privately from this

laboratory.

Data Set 6B

Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack,
J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams,
C., Zhu, S.X., Lonning, P.E., Borresen-Dale, A., Brown, P.O., and Botstein, D. 2000.
Molecular portraits of human breast tumours. Nature 406: 747–52.



CHAPTER SEVEN

Analysis of Differentially Expressed Genes

SECTION 7.1 INTRODUCTION

Data analysis is seen as the largest and possibly the most important area of microarray
bioinformatics. Reflecting this, there are three chapters in this book describing data
analysis methods, which themselves answer three sets of scientific questions that are
asked of microarray data:

1. Which genes are differentially expressed in one set of samples relative to an-
other?

2. What are the relationships between the genes or samples being measured?
3. Is it possible to classify samples based on gene expression measurements?

In this chapter, we describe the methods for the first of these questions: the
search for up- or down-regulated genes; Chapters 8 and 9 answer the other two
questions. This chapter covers a variety of techniques, drawn from both classical
statistics and more modern theory, to give a detailed account of how to analyze DNA
microarray data for differentially expressed genes. We start the chapter with three
examples to illustrate what we mean by the identification of differentially expressed
genes.

EXAMPLE 7.1 DATA SET 7A

Samples are taken from 20 breast cancer patients, before and after a 16-week course
of doxorubicin chemotherapy, and analyzed using microarrays. We wish to identify
genes that are up- or down-regulated in breast cancer following that treatment.1

EXAMPLE 7.2 DATA SET 7B

Bone marrow samples are taken from 27 patients suffering from acute lymphoblastic
leukemia (ALL) and 11 patients suffering from acute myeloid leukemia (AML) and
analyzed using Affymetrix arrays. We wish to identify the genes that are up- or down-
regulated in ALL relative to AML.2

1 Data are from the paper of Perou et al. (2000) and are available from the Stanford Microarray
Database. All references are given at the end of the chapter.

2 Data are from the paper of Golub et al. (1999) and are available from the Stanford Microarray
Database.

110
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Figure 7.1: Paired and unpaired data. (a) Paired data; the measurements from each individual are
subtracted to produce a single measure. We want to knowwhether the mean (or median) of the measures
is different from 0. (b) Unpaired data; there is a gene expression measurement from each individual in
each of the two groups. We want to know whether the mean (or median) of the two groups is different.

EXAMPLE 7.3 DATA SET 7C

There are four types of small round blue cell tumours of childhood: neuroblastoma
(NB), non-Hodgkin lymphoma (NHL), rhabdomyosarcoma (RMS) and Ewing tumours
(EWS). Sixty-three samples from these tumours, 12, 8, 20 and 23 in each of the groups,
respectively, have been hybridised to microarrays.3 We want to identify genes that are
differentially expressed in one or more of these four groups.

In all of these examples, we are interested in identifying differentially expressed
genes. The methods we describe in this chapter are designed for looking at one gene
at a time to determine whether or not it is differentially expressed. The method would
then be applied to every gene on the microarray in order to identify those genes that
are differentially expressed. Thus the microarray is being used as a tool to study many
individual genes in parallel. This approach contrasts with the analysis methods of
Chapters 8 and 9, which are specifically interested in the interactions between the
genes on the microarray.

Although these examples are similar, they are each examples of paired, unpaired
or more complex data.

Data set 7A is an example of paired data (Figure 7.1a). There are two measure-
ments from each patient, one before treatment and one after treatment. These two
measurements relate to one another; indeed, we are really interested in the difference

3 The data are from the paper of Khan et al. (2001) and are available from the Stanford Microarray
Database.
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between the two measurements (the log ratio) to determine whether a gene has been
up-regulated or down-regulated following treatment.

Data set 7B is an example of unpaired data (Figure 7.1b). There are two groups of
patients, and we are interested in seeing if a gene is differentially expressed between
the two groups. There is no inherent relationship between the patients in one group
and the patients in the other group.

Paired and unpaired data require slightly different analyses; these will be elucidated
during the chapter. Data set 7C has four groups and requires more complex analysis.
In this chapter, we will only give a brief introduction to more complex types of data,
and the analysis of variance (ANOVA) analyses that are required for them.

The remainder of the chapter is organized into the following six sections:

Section 7.2: Fundamental Concepts, introduces the ideas behind all of the meth-
ods in this chapter: statistical inference, hypothesis tests, p-values and indepen-
dence.

Section 7.3: Classical Parametric Statistics – t-Tests, discusses the traditional sta-
tistical approach to this type of data.

Section 7.4: Non-parametric Statistics, looks at methods that allow robust analysis
of data that is not normally distributed. We will examine both traditional non-
parametric statistics, and the more modern approach of bootstrapping, which
combines the power of t-tests with the robustness of traditional non-parametric
statistics.

Section 7.5: Multiplicity of Testing, describes the statistical problems associated
with applying analyses to many genes and a simple method to resolve these
problems.

Section 7.6: ANOVA and General Linear Models, gives a brief introduction to anal-
ysis of more complex data, such as in data set 7C where there may be more
than two groups of patients, or in data sets where there are several factors that
determine the gene expression measurements.

SECTION 7.2 FUNDAMENTAL CONCEPTS

This section describes four concepts that underlie all the methods described in this
chapter:

� Statistical inference
� Hypothesis tests
� p-Values
� Independence

Statistical Inference

Statistical inference lies at the core of both science and classical statistics. Consider
again data set 7A. We are interested in identifying genes that are up- or down-regulated
in breast cancer following chemotherapy. Suppose we were to perform an experiment
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Figure 7.2: The idea of a statistical inference is central to classical statistics and underlies the
scientific method.We are interested in describing a population of individuals; however, it is not practical
to measure every individual in the population. Instead, we choose a representative sample of individuals
from the population and make our measurements on these individuals. We then seek to extrapolate from
the measurements of the individuals in the sample to make assertions about the population from which
the sample derived.

on all breast cancer patients in the world who have received this treatment. This
would completely describe the results of this therapy, but would be a slow and ex-
pensive experiment, and impossible in practical terms. Instead, we choose a sample4

of 20 patients, which we hope is representative of the breast cancer population, and
perform an analysis on these patients. We then seek to generalise our results from the
20 patients and make scientific assertions about changes in gene expression follow-
ing breast cancer chemotherapy in the whole population of breast cancer patients
(Figure 7.2).

Where we are trying to make a statistical inference, we are explicitly interested in the
variabilities between individuals in the population to which we are extrapolating. We
want to capture as much of this variability in our experiment and statistical analyses
as we can: therefore, we seek to maximise the number of biological replicates we use,
subject to budgetary and practical constraints. We may also seek to include population
subtypes, for example, age or genetic factors, both in the experimental design and the
statistical analyses.

Hypothesis Tests and P-values

For each gene in data set 7A, we have a measurement of expression from before and
after treatment in each patient. These would be normalized, logged and combined
into a log ratio for each patient, which describes numerically the extent to which the
gene is differentially expressed, and whether it is up-regulated or down-regulated.

We want to identify those genes that are consistently differentially regulated across
all 20 patients, with a view to asserting that these genes are differentially expressed
following this chemotherapy. In early microarray experiments, researchers would have

4 The word sample here is a reference to a statistical sample from a population, and not a biological
sample that will be hybridized to a microarray. Unfortunately, the statistics community and the
biological community use the same word to mean different things, which can sometimes lead to
confusion.
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chosen a threshold, for example, 2-fold differential expression, and selected those
genes whose average differential expression is greater than that threshold.

From a statistical perspective, however, this is not a good approach, for two
reasons:

� The average fold ratio does not take into account the extent to which the mea-
surements of differential gene expression vary between the individuals being
studied. The level of population variability is critical if we are trying to use the
experimental sample to infer a general scientific statement about the overall
population.

� The average fold ratio does not take into account the number of patients in
the study, which statisticians refer to as the sample size. Intuitively, we would
expect that the larger the sample size, the more confident we could be about
determining genes that are differentially expressed.

For these reasons, statisticians determine whether or not a gene is differentially ex-
pressed via methodologies known ashypothesis tests. A hypothesis test builds a prob-
abilistic model for the observed data based on what is known as a null hypothesis.

The null hypothesis is that there is no biological effect. For a gene in data set
7A, it would be that this gene is not differentially expressed following doxorubicin
chemotherapy; for a gene in data set 7B, it would be that this gene is not differentially
expressed between ALL and AML patients. If the null hypothesis were true, then the
variability in the data does not represent the biological effect under study, but instead
results from differences between individuals or measurement error.

Each hypothesis test in this chapter builds a probabilistic model under the null
hypothesis. Using this model, it is possible to calculate the probability of observing a
statistic, for example, an average differential gene expression, that is at least as extreme
as the observed statistic in the data. This probability is known as a p-value. The smaller
the p-value, the less likely it is that the observed data have occurred by chance, and
the more significant the result. For example, a p-value of 0.01 would mean there is a
1% chance of observing at least this level of differential gene expression by random
chance.

We then select differentially expressed genes not on the basis of their fold ratio,
but on the basis of their p-values. We hypothesize that the differential expression ob-
served in those genes with very small p-values is unlikely to have occurred by chance,
and therefore has resulted from the biological effect being tested. In traditional appli-
cations, a p-value less than 0.01 would be deemed a significant result. In microarray
applications, we need to use more stringent p-values; this is discussed in detail in
Section 7.5.

Independence

Two measurements are independent if knowing the value of one measurement does
not give information about the value of the other. All of the statistical tests we describe
in this chapter require that the measurements being analysed are independent.
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For example, for any gene, the measurements of expression in two different patients
are independent. On the other hand, replicate measurements from the same patient,
for example replicate features on an array, are not independent and could not be
included as separate variables in a hypothesis test.

The simplest method for ensuring that all data points in the analysis are indepen-
dent is to combine non-independent measurements into single variables. In data set
7A, we combine the two points from the same patient by subtracting one from the
other in order to create a single data point for each patient and perform an analysis
on these values. We could not treat the 40 samples as independent variables.

SECTION 7.3 CLASSICAL PARAMETRIC STATISTICS – t-TESTS

These hypothesis tests are historically the standard approach to analyze data in the
forms of data sets 7A or 7B. There are two versions of the test, depending on whether
the data is paired or unpaired.

Paired or One-Sample t-Test

Thepaired t-test, also referred to by statisticians as theone-sample t-test,5 is applica-
ble to data in the form of data set 7A. In that data set, there is a pair of measurements
for each patient, one before treatment and the other after treatment, and these are
combined to generate a single log ratio for each patient. Thus the data to be analysed
look like a single column of numbers, one for each patient. From this data, one would
calculate the t-statistic, using the following formula:

t = x̄

s/
√
n

(Eq. 7.1)

where x̄ is the average of the log ratios of each of the patients; s is the standard deviation
of the sample of patients; and n is the number of patients in the experiment. A p-
value is then calculated from the t-statistic by comparing it to a t-distribution with an
appropriate number of degrees of freedom. The degrees of freedom is the number of
independent variables in the analysis; in the case of paired t-tests, it is the number of
patients minus one.

The method of comparing the average log ratio with a threshold to determine the
differentially expressed genes would use exactly the quantity x̄ from Equation 7.1.
However, we observe that the t-test is more sophisticated than this method. The
significance of differentially expressed genes depends not only on the average log
ratio, but also on both the population variability and the number of individuals in the

5 The confusion over the two uses of the word sample is even greater when it comes to the names
of t-tests: one-sample t-tests are used when two biological samples are taken from each patient
(where there is one statistical sample of patients); two-sample t-tests are used when one biological
sample is taken from each patient (when there are two statistical samples of patients). I think this
really highlights the benefit of having biologists and statisticians working very closely together in
order to learn each other’s language.
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TABLE 7.1: Data for ACAT2 from Data Set 7A

Patient Before Treatment After Treatment Log Ratio Fold Difference

7 −0.86 −2.17 −1.30 −2.47
10 −1.97 −1.93 0.04 +1.03
12 −2.07 −1.28 0.79 +1.73
14 −1.91 −2.32 −0.41 −1.33
15 −0.94 −2.00 −1.06 −2.09
18 −1.29 −1.74 −0.45 −1.37
26 −1.09 −1.54 −0.44 −1.36
27 −0.65 −0.60 0.06 +1.04
39 −1.69 −2.06 −0.37 −1.30
41 −0.79 −1.22 −0.43 −1.35
47 −1.19 −2.11 −0.91 −1.88
48 −1.36 −1.40 −0.04 −1.03
53 −1.11 −1.59 −0.48 −1.40
61 −1.82 −1.72 0.10 +1.07

100 −2.22 −2.13 0.10 +1.07
101 −1.76 −1.94 −0.18 −1.14
102 −1.51 −2.37 −0.86 −1.81
104 −1.65 −1.98 −0.33 −1.25
109 −0.78 −1.49 −0.71 −1.63
112 −1.80 −1.82 −0.03 −1.02
Average −1.42 −1.77 −0.35 −1.21
Sample SD 0.48 0.43 0.48

Note: In this experiment, the samples from before and after treatment have been hybridised to two
separate arrays, with a common reference sample in the second channel. The measurements before
and after treatment are the log ratios of the experimental sample to the reference sample. The log
ratio is the difference between these two values; the logs are taken to base 2, so a value of 1 represents
a 2-fold up-regulation, and −1 represents a 2-fold down-regulation. The sample standard deviations
have been calculated with a denominator of n− 1 = 19 to ensure that they are unbiased estimators
of the population standard deviation.

study. So a gene could be only 1.5-fold differentially expressed, but detected as such if
the population variability is small. Similarly, the more individuals in the experiment,
the easier it is to determine differentially expressed genes.

Paired t-tests are widely implemented in computer software, including Excel, SPSS,
SAS, S+, R and GeneSpring. They are also straightforward to implement in code,
and there are libraries available for all major programming languages that include
functions for t-distributions. Most users will use one of these software packages to
apply a t-test: for example, in Excel this would be achieved via the TTEST function,
and in R this would be achieved via the t.test function.

EXAMPLE 7.4 PAIRED t-TEST APPLIED TO A GENE FROM DATA SET 7A

The gene acetyl-Coenzyme A acetyltransferase 2 (ACAT2) is on the microarray used
for the breast cancer data, data set 7A. We can use a paired t-test to determine whether
or not the gene is differentially expressed following doxorubicin chemotherapy (Table
7.1). In this particular experiment, the samples from before and after chemotherapy
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have been hybridized on separate arrays, with a reference sample in the other channel.
There are three steps:

1. Normalise the data using one of the methods described in Chapter 5; this is not
part of the t-test but is usually required before microarray data can be analysed.
Because this is a reference sample experiment, we calculate the log ratio of
the experimental sample relative to the reference sample for before and after
treatment in each patient.

2. Calculate a single log ratio for each patient that represents the difference in
gene expression due to treatment by subtracting the log ratio for the gene before
treatment from the log ratio of the gene after treatment.

3. Perform the t-test, either using a software package or by calculating the average
and sample standard deviation of the log ratios and applying Equation 7.1.
The t-statistic is 3.22; this is compared with a t-distribution with 19 degrees of
freedom (20 patients minus 1). The p-value for a two-tailed one-sample t-test
is 0.0045, which is significant at a 1% confidence level.

We would therefore conclude (for the moment) that this gene has been significantly
down-regulated following chemotherapy at the 1% level. There are some caveats to
this statement that will become evident in later parts of this chapter.

Unpaired or Two-Sample t-Test

The unpaired t-test is very similar to the paired t-test, the difference being exper-
imental design. In data set 7A, the data are paired: there are two values from each
patient, which are first subtracted from each other, and the paired t-test is applied to
the difference. In data set 7B, the data are unpaired: there are two groups of patients
with no relationship to each other, and we test to see if the difference between the
means of the two groups is zero. The unpaired t-test, also called the two-sample t-test,
uses a formula similar to the paired t-test:

t = x̄1 − x̄2

( s
2
1
n1

+ s2
2
n2

)
(Eq. 7.2)

where x̄1 and x̄2 are the means of the two groups; s1 and s2 are the sample standard
deviations of the two groups; and n1 and n2 are the sizes of the two groups. There
are actually two forms of the unpaired t-test: the version here allows the standard
deviation between the two groups to be different, which is a better version to use for
microarrays. There is also a version that calculates a single standard deviation for all
the data. The t-statistic is compared with a t-distribution with an appropriate number
of degrees of freedom to obtain a p-value.6

6 The number of degrees of freedom for a two-sample t-test with unequal variance is given by a
complicated formula; the interested reader is referred to one of the two statistics books referenced
at the end of this chapter.



118 ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES

TABLE 7.2: Data for Metallothionein IB from Data Set 7B

Patient ALL Log Patient AML Log

1 8.60 28 8.42
2 7.85 29 8.35
3 8.85 30 9.58
4 8.20 31 9.18
5 7.60 32 9.41
6 8.21 33 8.96
7 8.47 34 8.81
8 8.51 35 9.55
9 8.75 36 8.18

10 6.75 37 8.71
11 7.93 38 9.46
12 7.71
13 7.88
14 7.55
15 6.61
16 8.75
17 9.32
18 8.40
19 7.16
20 8.41
21 4.75
22 7.92
23 7.82
24 8.42
25 7.08
26 7.38
27 9.29
Average 7.93 8.97
Sample s.d. 0.94 0.51
Fold Ratio −1.84 +1.84
Note: This data came from Affymetrix arrays; the values have been logged (to base 2) to ensure that
the data are normally distributed.

The unpaired t-test is implemented in the same range as the paired t-test in the
software. Because of the similarity between the two tests, the software frequently uses
the same formula, for example, Excel the TTEST formula in Excel or the t.test
formula in R.

EXAMPLE 7.5 UNPAIRED t-TEST APPLIED TO A GENE FROM DATA SET 7B

The gene metallothionein IB is on the Affymetrix array used for the leukaemia data,
data set 7B. We want to identify whether or not this gene is differentially expressed
between the AML and ALL patients. We want to identify genes which are up- or down-
regulated in AML relative to ALL (Table 7.2). There are three steps:

1. The data is log transformed.
2. The average and sample standard deviations are computed for each set of pa-

tients: one average and standard deviation for the ALL patients, and a separate
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average and standard deviation for the AML patients. The statistical test deter-
mines whether these two means are equal.

3. The t-test is performed using one of the software packages, or via Equation 7.2.
In this case, the t-statistic is 4.35. This is compared with a t-distribution with 33
degrees of freedom and produces a p-value of 0.00012.

We conclude that the expression of metallothionein IB is significantly higher in AML
than in ALL at the 1% level.

Requirements of t-Tests

The t-tests just described are very commonly used in statistics and appear frequently
in the biological and medical literature. However, t-tests require that the distribution
of the data being tested is normal. This has slightly different meaning for the paired
and unpaired tests:

� For paired t-tests, it is the distribution of the subtracted data that must be
normal.

� For unpaired t-tests, the distribution of both data sets must be normal.
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Figure 7.3: Histogram of the difference between the log ratios of the expression of ACAT2 in 20
breast cancer patients before and after a 16-week course of chemotherapy with doxorubicin. The
data are approximately normal; the mean of the distribution appears to be less than zero, suggesting
that this gene might be down-regulated.
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TABLE 7.3: Data for Diubiquitin from Data Set 7A

Patient Unlogged Difference Log Ratio Fold Change

7 −10.08 −2.91 −7.54
10 0.85 0.62 +1.54
12 −0.28 −0.11 −1.08
14 0.04 0.08 +1.06
15 −0.68 −0.42 −1.34
18 0.17 0.12 +1.09
26 −4.93 −0.99 −1.99
27 −0.12 −0.16 −1.12
39 −1.67 −0.44 −1.35
41 −27.98 −1.64 −3.12
47 −0.92 −0.55 −1.46
48 −2.00 −0.99 −1.99
53 −3.04 −1.37 −2.58
61 −3.80 −2.05 −4.14

100 −3.53 −3.20 −9.18
101 −1.44 −1.12 −2.17
102 −0.62 −0.72 −1.64
104 −4.50 −1.19 −2.27
109 −0.23 −0.34 −1.27
112 0.10 0.12 +1.09

Note: The unlogged difference includes two outliers, patient 7 and patient 41. These have a detrimental
effect on the data analysis, and provide unreliable results in the t-test applied to the raw data. These
data points are not outliers in the logged data, and so the t-test applied to the logged data is more
reliable.

EXAMPLE 7.6 EXAMPLES OF NORMALLY DISTRIBUTED DATA

Figure 7.3 shows a histogram of the data from Example 7.4, the gene ACAT2 from data
set 7A. Although the sample is small, the data look approximately normal.

Figures 7.4 shows histograms of the data from Example 7.5, the gene metalloth-
ionein from data set 7B. Again, the samples are small, particularly the AML sample
which only has 11 patients, but the data look approximately normal.

Both of these data sets meet the normality requirement, so t-tests are appropriate
analyses of these data.

EXAMPLE 7.7 EXAMPLES OF DATA THAT ARE NOT NORMALLY DISTRIBUTED

The raw data for the gene diubiquitin from data set 7A are not normally distributed
(Figure 7.5a; Table 7.3). There are two outliers, with values of approximately −10 and
−28. When the t-test is applied to the unlogged data, the p-value is 0.03, which is not
significant at the 1% level.

Figure 7.4: Histograms of the log of the gene expression of metallothionein in (a) 11 AML patients
and (b) 27 ALL patients. Both distributions are approximately normal. The mean of the histogram for
the ALL patients appears to be lower than the mean for the AML patients, suggesting that this gene
might be differentially regulated in these two diseases.
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TABLE 7.4: Summary Statistics for Diubiquitin Gene from Data Set 7A

Data Mean Standard Deviation Standard Error Standard Error/Mean t-statistic p-value

Unlogged −3.23 6.36 1.46 −0.45 −2.27 0.03
Logged −0.86 1.00 0.23 −0.27 −3.86 0.001

Note: The standard error of the unlogged data is relatively large relative to the mean; this is because of the two outlier
values. Because of this, the p-value is not significant. The logged data are closer to a normal distribution; the outliers
do not have extreme values, and the standard error is small relative to the mean. This is reflected in the significant
p-value.

After the data have been log transformed, the outliers are no longer extreme, and
the distribution looks normal (Figure 7.5b). When the t-test is applied to the logged
data, the p-value is 0.001, which is significant at the 1% level.

When we use the correct analysis, we conclude that the gene is significantly down-
regulated. This is in line with what we would expect from inspection of Figure 7.5b;
in most patients, this gene is down-regulated. We would not have reached this con-
clusion with the incorrect analysis.

This example is quite counterintuitive. You might have thought the unlogged data,
with its two large negative scores, would show clearer evidence of down-regulation
than the logged data. In fact, the reverse is true. We can see why this is the case from
the summary statistics (Table 7.4): the two outliers increase the standard error of the
raw data. The high standard error decreases the certainty of the test, which returns
a less significant result. In contrast, the standard error of the logged data is much
smaller relative to the mean. As a result, the variability of the data is smaller, and the
t-test returns a significant result.

SECTION 7.4 NON-PARAMETRIC STATISTICS

This section discusses methods that do not assume that the data is normally dis-
tributed. There are two good reasons to use these methods in preference to t-tests for
the analysis of microarray data.

� Microarray data is noisy. There are many sources of variability in a microarray
experiment, and outliers are frequent. Thus the distribution of intensities of
many genes may not be normal. Non-parametric methods are robust to outliers
and noisy data.

� Microarray data analysis is high throughput. When performing a t-test on a
single set of data, it is straightforward to check the distributions for normality.

Figure 7.5: Histograms of the difference of expression of diubiquitin in 20 breast cancer patients.
(a) The data have not been logged. The distribution is not normal: there are two outliers, with values
of approximately −28 and −11. (b) The data have been logged. The distribution is normal; the outliers
have been pulled in. Note that in both cases the mean difference is less than zero. However, with the
unlogged data, a t-test gives a not-significant result because the standard error of the mean is so high,
while for the logged data, a t-test is significant because the standard error is much lower.
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However, when analysing the many thousands of genes on a microarray, we
would need to check the normality of every gene in order to ensure that a t-test
is appropriate. Those genes with outliers or which were not normally distributed
would then need a different analysis. It makes more sense to apply a test that is
distribution free and thus can be applied to all genes in a single pass.

There are two types of non-parametric test we will discuss in this section:

� Classical non-parametric tests are equivalent to parametric tests but do not
assume that the data are normally distributed.

� Bootstrap tests are more modern and applicable to a wide range of ana-
lyses.

Classical Non-parametric Statistics

These are simple methods to apply and are implemented in all statistics packages,
including SPSS, SAS, S+ and R, but not in Excel. There are non-parametric equiv-
alents of both the paired and unpaired t-tests described in Section 7.3. The non-
parametric equivalent of the paired t-test is called the Wilcoxon sign-rank test. The
non-parametric equivalent of the unpaired t-test is called theMann–Whitney test, or
sometimes theWilcoxon rank-sum test.

The Wilcoxon sign-rank test works by replacing the true value of the log-ratio data
with ranks according to the magnitude of the log ratio: 1 for the smallest, 2 for the
second smallest, and so on. The sum of the ranks for the “positive” (up-regulated)
values is calculated and compared against a precomputed table to obtain a p-value.

The Mann–Whitney test is similar. The data from the two groups are combined and
given ranks: 1 for the smallest, 2 for the second smallest, and so on. The ranks for the
larger group are summed and that number is compared against a precalculated table
to obtain a p-value.

These tests have the advantage of not requiring that the data are normally dis-
tributed, although the sign-rank test does require that the data are symmetric. The
disadvantage of these tests is that they are less powerful than their parametric or boot-
strap equivalents. The power of a statistical test is defined as the probability of seeing
a positive result when there really is a positive result to be seen. We discuss power in
greater detail in Chapter 10. Because of the loss of power, classical non-parametric
statistics have not become popular for use with microarray data, and instead bootstrap
methods tend to be preferred.

EXAMPLE 7.8 WILCOXON SIGN-RANK TEST ON DIUBIQUITIN FROM DATA SET 7A

The Wilcoxon sign-rank test is applied to both the unlogged and logged version of the
diubiquitin data from Example 7.7. The results are as follow:

Unlogged: p-value is 0.00032.
Logged: p-value is 0.00048.
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TABLE 7.5: Data for the Gene RYK from the
Leukemia Data Set

Patient ALL Log Patient AML Log

1 7.22 28 6.78
2 5.25 29 4.95
3 6.58 30 6.52
4 6.19 31 4.81
5 3.00 32 6.19
6 5.61 33 6.38
7 0.00 34 6.67
8 0.00 35 7.34
9 7.21 36 3.81

10 0.00 37 6.09
11 0.00 38 6.02
12 0.00
13 6.81
14 6.29
15 1.00
16 1.58
17 7.29
18 4.25
19 5.32
20 5.91
21 4.58
22 6.02
23 6.00
24 2.81
25 5.78
26 4.46
27 0.00
Average 4.60 Average 5.96

Note: These data were generated from Affymetrix arrays using
version 4 of their software. The genes for which the hybridi-
sation intensity of the mismatch probes was greater than the
true probes had negative scores; these have been replaced with
zeros in the logged data set (see Section 5.2). Later versions of
the Affymetrix software do not generate negative numbers.

In both cases, the test gives a significant result, in line with the t-test analysis on the
logged data. The Wilcoxon test is robust to outliers and so gives a significant result
even on the unlogged data.

EXAMPLE 7.9 MANN–WHITNEY TEST ON RECEPTOR-LIKE TYROSINE KINASE FROM
DATA SET 7B

The gene receptor-like tyrosine kinase (RYK) appears on the Affymetrix arrays used for
data set 7B. These have been created using an early version of Affymetrix’s microarray
analysis suite. A number of values have negative scores and have been replaced with
zeros (see Section 5.2) in the logged data set (Table 7.5).



126 ANALYSIS OF DIFFERENTIALLY EXPRESSED GENES

RYK

F
re

qu
en

cy

0 2 4 6 8

0
1

2
3

4
5

6
7

(a)

RYK

F
re

qu
en

cy

3 4 5 6 7 8

0
1

2
3

4

(b)



SECTION 7.4 NON-PARAMETRIC STATISTICS 127

TABLE 7.6: Advantages and Disadvantages of Different Statistical Analyses

t-Tests Non-parametric Tests Bootstrap Analyses

� Easy � Easy � Robust
� Powerful � Robust � Powerful
� Widely implemented � Widely implemented × Requires use of specialist
× Not appropriate for × Less powerful packages or programming

data with outliers

The p-value from the Mann–Whitney test is 0.039, which is not significant at a 1%
confidence level. The two-sample t-test applied to this data gives a p-value of 0.0032,
which is significant at the 1% confidence level.

The answers are different because neither the ALL data nor the AML data are nor-
mally distributed (Figure 7.6). Worse, the ALL data (Figure 7.6A) is bimodal, with 10
patients having very low or no expression, and the remaining patients showing rela-
tively high expression. The ALL sample is very small, so it is difficult to be conclusive,
but it also does not appear to be normally distributed.

Therefore, the t-test is not an appropriate analysis, and we should not believe the
significant result from the t-test. We would conclude from the non-parametric analysis
that this gene is not significantly differentially expressed between these two disease
types. However, we must remember that the Mann–Whitney test is a less powerful test
and is more likely to lead to a false negative result. In the next section we will show
that the bootstrap test applied to the same data gives a significant result.

Bootstrap Analyses

As with classical non-parametric tests, bootstrap analyses do not require that the data
are normally distributed and are thus robust to noise and experimental artifacts. They
are also more powerful than the classical non-parametric tests. Therefore, bootstrap
analyses are more appropriate for microarray analysis than either t-tests or classical
non-parametric tests (Table 7.6). The disadvantage of bootstraps is that they are com-
putationally intensive, so it is only since the advent of modern computer technology
that bootstrapping has become widespread.

There are bootstrap equivalents for both the paired and unpaired analyses de-
scribed earlier. It is also possible to use bootstraps for more complex analyses, such
as ANOVA models (Section 7.6) and cluster analysis (Chapter 8). In this section, we
will describe how the bootstrap works for unpaired data, because this is the simplest
analysis to understand. At the end of the chapter, we reference an excellent book on
bootstrapping should you wish to study these methods further.

Figure 7.6: Histograms of the log of the gene expression of RYK in (a) 27 ALL patients and (b) 11
AML patients. Negative scores in the raw data have been replaced with zeros. Neither distribution is
normal. The ALL data is bimodal, which means it has two peaks: 10 patients have little or no expression
and 17 patients have gene expression. The AML is a small data set, but is also not normal.
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Figure 1.7: Array quality. (a) On Affymetrix arrays the features are rectangular regions. The masks
refract light, so there is leakage of signal from one feature to the next. The Affymetrix image-processing
software compensates for this by using only the interior portions of the features. (b) Spotted arrays
produce spots of variable size and quality. This image shows some of this variation; we cover image
processing of spotted arrays in detail in Chapter 4. (c) Inkjet arrays tend to be of the highest quality,
with regular, even spots.
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Figure 1.12: The pixels comprising a feature. (a) A false-colour image of the pixels from a single scan
of a 100-µm microarray feature. The size of the laser spot is 5µm. The pixel size has been set to 5µm
so that each pixel represents the area from the size of the laser spot. (b) and (c) See pp. 9 and 10.
(d) Two neighbouring features on an array with a streak through them, measured with a laser spot size
of 5 µm and a pixel size of 5µm. The streak is clear on both spots and so the spot can be identified as
problematic. (e) The same features scanned with laser spot size of 10µm and a pixel size of 5µm. The
streak has become blurred.
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Figure 1.13: Output of scanners. (a) This is the scanner output for a part of a microarray – in this case
one of twelve 16× 16 blocks of features. This is the monochrome image of the Cy3 (green) channel.
(b) The scanner output for the same part of the array but using the Cy5 (red) channel. (c) It is usual to
combine the two monochrome images into a composite false-colour image of the array. Green features
correspond to features that are expressed more in the sample labelled with Cy3 than the sample labelled
with Cy5, and so will be bright in (a) and dark in (b). Similarly, red spots will be bright in (b) and dark in
(a). Yellow features have a similar level of expression in both samples. Dark features are low expressed
in both samples.
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Figure 4.1: (a) An example image of a complete microarray. In this case, there are 48 grids in a 12× 4
pattern, and each grid has 12× 16 features. Therefore, there are a total of 9,216 features on this array.
(b) See p. 64.
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Figure 4.2: Problems with microarray images from pin-spotted arrays: (1) Uneven grid positions. The
two grids are not aligned. This occurs because the pins are not perfectly aligned in the cassette.
(2) Curve within the grid. Note that the centers of the features at the top of the vertical line lie on
the line, but that the centers of the features at the bottom of the line are to the left of the line. This
can happen if the array is not horizontal during array manufacture, or because of movement of the pins
during manufacture. (3) Uneven spacing between features. This occurs because of pins moving during
manufacture; this itself could result from the glass slide not being perfectly flat. (4) Uneven feature sizes.
Different features can have different sizes as a result of different volumes of liquid being deposited on
the array. This can also result from uneven drying of the features, so it is important to maintain constant
temperature and humidity of the array during the manufacture process.



(a) (b)
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Figure 4.3: (a) Fixed circle segmentation. A circle of the same size is placed on every feature on the
array and the pixels inside the circle are used to determine the intensity of the feature. This is not a good
method because the circle will be too large for some features and too small for others. (b) Variable circle
segmentation. A circle of different size is applied to each feature and the pixels inside the circle are used
to determine the intensity of the feature. This performs better on different size features but does not
perform so well on features with irregular shapes, for example, the irregular red feature that is marked
with an arrow. (c) Zoom in on the red channel of the irregularly shaped feature marked with the arrow in
(b). Note the black region where there is no hybridisation, probably because there is no probe attached
to the glass in that area. (d) Histogram method applied to that feature. The red pixels are the ones that
have been used to calculate the feature signal; the green pixels have been used to calculate the feature
background. The black pixels are unused. The area corresponding to the black region in (c) is not used
for calculating the feature intensity. The brightest features have also been excluded. The red-to-green
ratio of this feature calculated by fixed circle segmentation is 1.8, variable circle segmentation is 1.9,
and histogram segmentation is 2.6; so the measured differential gene expression between the samples
is different with the different algorithms. Because of the irregular shape of the feature, the histogram
method probably gives the most realistic measurement. (e) Histogram of the intensities of the pixels
in the irregularly shaped feature. The red bars represent pixels used for the signal intensity; the green
bars represent pixels used for the background intensity; the black bars are unused pixels. The brightest
and darkest pixels are not used, thus giving a better measurement of hybridisation intensity.
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Figure 5.7: Spatial bias on a microarray and two-dimensional Loess regression. (a) False-colour
representation of the log ratios of a microarray, with mouse kidney in Cy3 and liver from the same mouse
in Cy5 (data set 5B). Each spot represents a feature. The x and y coordinates of each spot correspond
to the x and y coordinates of the feature on the array. The colour of the spot represents the log ratio
(Cy5/Cy3) of the feature, with red spots having a positive log ratio and green spots having a negative log
ratio. There is a strong spatial bias on the array, with green spots in the top-left-hand corner and red
spots in the bottom-right-hand corner. The areas of the array with missing spots represent features that
have been flagged by the image-processing software, or features with a higher background than signal
that have been removed from the data set. (b) The same data, but with the fit of a two-dimensional
Loess surface to the log ratios superimposed as contours. The contours follow the colour trend, going
from negative at top left to positive at bottom right. (c) False-colour plot of the normalised log ratio
values of the features. These are calculated by subtracting the fitted values of the Loess surface from
the raw log ratios. There is no spatial bias on the normalised data.
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Figure 5.8: Block-by-block regression. Block-by-block regression is performed by applying one-
dimensional Loess normalisation to the features in each grid on the array separately. The array in data
set 5B has 48 grids. (a) and (b) See p. 92. (c) The whole array has been normalised using block-by-block
normalisation. The spatial bias has been eliminated.
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ALL AML

Bootstrap ALL Bootstrap AML

Combined Data

t-statistic

t-statistic

Figure 7.7: The methodology of the bootstrap applied to Data Set 7B. A t-statistic is calculated using
the real data, as a measure of differential gene expression, but a p-value is not computed directly from
this statistic. Instead, the data are combined, and then bootstrap data sets are constructed from the
combined data. The bootstrap data sets also have 27 ALL patients and 11 AML patients, but with each
patient having a measurement chosen at random from the combined 38 values from the original data.
A t-statistic is computed for each of the bootstrap data sets to produce a population of t-statistics rep-
resenting randomized data with measurements similar to the real data. The real t-statistic is compared
with this distribution to generate a p-value.

With the unpaired analysis, there are two groups, and we seek to determine whether
the means of the two groups are different. For example, with the gene RYK from data
set 7B, there are 27 measurements from ALL patients and 11 measurements from AML
patients; we want to know whether the gene is differentially expressed between the
two groups of patients.

Under the null hypothesis, there is no difference in gene expression between the
two groups. If that were the case, then any of the measurements in the data could
have been observed in any of the individuals; in the example, any of the AML patients
could have had any of the 38 measurements in Table 7.5 associated with both the AML
and ALL patients. The bootstrap works by constructing a large number of random
data sets by resampling from the original data, in which each individual is randomly
allocated one of the measurements from the data, which could be from either of
the groups (Figure 7.7).7 Thus the bootstrap data sets look like the real data, in that
they have similar values, but are biologically nonsense because the values have been
randomized.

The aim of the test is to compare some property of the real data with a distribution
of the same property in random data sets. The most commonly used property to use
is the t-statistic (Equation 7.2); this is a good measure because it relates the difference
in means (fold ratio) to the population variability and the number of individuals in
the experiment. However, we do not use the t-distribution to calculate a p-value.
Instead, we generate an empirical distribution using the t-statistics calculated from
the randomized bootstrap data.

7 There are in fact two ways of performing a bootstrap: with or without replacement. When a bootstrap
is performed with replacement, different individuals in the bootstrap data could have the same value
from the real data. When a bootstrap is performed without replacement, each of the real values is only
used once in the bootstrap data. In this chapter, we describe the method with replacement, while
the significance analysis of microarrays (SAM) software mentioned later performs the bootstrap
without replacement. Although there is some debate about which is better, in practical terms the
two methods are fairly equivalent and produce very similar results.
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Histogram of bootstrap t statistics for RYK

t statistic

F
re

qu
en

cy

−5

0
50

00
0

10
00

00
15

00
00

20
00

00

−4 −3 −2 −1 0 1 2 3 4 5

Figure 7.8: Histogram of the results of t-statistics from 1,000,000 bootstrap resamples for the
gene RYK from the leukemia data. The t-statistic of the real data is 3.1596. We have marked +3.1596
and −3.1596 on the histogram to demonstrate that the majority of the bootstrap statistics are less
extreme: 9,750 of the bootstrap t-statistics lie outside these lines. Thus, the p-value is just under 0.001,
and we conclude that this gene is significantly differentially expressed at the 1% level.

The t-statistic from the real data is compared with the distribution of t-statistics
from the bootstrap data (Figure 7.8). We calculate an empirical p-value by computing
the proportion of bootstrap statistics that have a more extreme value than the t-
statistic from the real data. If the real t-statistic is in the belly of the distribution, then
it is indistinguishable from t-statistics generated from randomized data. We would
conclude that the gene is not significantly differentially expressed. If, on the other
hand, the statistic from the real data is towards the edge of the bootstrap distribution,
then it is unlikely that the experimental result can have arisen by chance, and we
would conclude that the gene is significantly differentially expressed.

EXAMPLE 7.10 BOOSTRAPPING RYK FROM DATA SET 7B

Consider again the gene RYK from the previous example. There are many arrays on
which the control signal is greater than the gene signal, so the Affymetrix software
calls the gene absent. We replaced these readings with zeros in the logged data. We
construct a t-statistic for the real data, using Equation 7.2. The t-statistic is 3.1596, but
we do not use the t-distribution to calculate a p-value from this statistic.
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TABLE 7.7: Advantages of Different Bootstrap Implementations

SAM BOOT Package in R Writing Your Own Program

� Easy to use Excel plug-in � Easy to use if you can
use R or S+

� Maximum speed and
efficiency

� Can handle many types of
data

� Can run in background on
server

� Faster than SAM

� Good false discovery rate
algorithm

� Good for high-throughput
analyses

Next, we create bootstrap data sets, each of which also consists of 27 ALL patients
and 11 AML patients. For each patient, we choose a measurement at random from the
38 observed values in Table 7.6 and assign that value to that patient. For each bootstrap
data set we construct a t-statistic, also using Equation 7.2, and record the value. We
repeated this procedure 1,000,000 times to generate a bootstrap distribution of the
t-statistics (Figure 7.8). Of the 1,000,000 values, 9,750 had an absolute value greater
than 3.1596, the t-statistic from the real data. Thus the bootstrap p-value for RYK is
just under 0.001, which is significant at the 1% level. This contrasts with the result for
the classical non-parametric test.

In Example 7.10, we used 1,000,000 bootstrap data sets to generate a distribution.
This is more than is usually necessary. In general, we recommend performing the
bootstrap at 10 times the number of genes on the array being analysed. So on a
microarray with 10,000 genes, we would recommend 100,000 bootstrap data sets. The
reason for this is that the number of replicates determines the granularity of the p-
values; we will see in Section 7.5 that we may need to use p-values equal to one over
the number of genes on the array. The use of this recommended number of bootstrap
data sets enables you to do so with reasonable accuracy.

Significance Analysis of Microarrays

It is straightforward for a reasonably proficient programmer to write code to perform
bootstrap analyses. However, there is a package available called SAM that performs
bootstrap analyses on microarray data. It also provides a false discovery rate estimate
using a method that is more sophisticated than the method described in Section 7.5.

SAM is available as an Excel plug-in from the URL given at the end of the chapter.
It is very easy to use, but can be slow on large data sets. I was not able to perform
more than a few hundred replicates on the two data sets I have used as examples in
this chapter using SAM on my desktop PC. However, it is useful for smaller data sets
and exploratory work. We summarise the advantages of using SAM or other bootstrap
implementations in Table 7.7.

SECTION 7.5 MULTIPLICITY OF TESTING

In Sections 7.3 and 7.4, we have been performing statistical tests on different genes
and concluding that these genes may be up- or down-regulated based on these tests.
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When we analyse a microarray experiment, we want to apply these tests to many genes
in parallel. In data set 7A, the breast cancer data, there are 9,216 genes. In data set 7B,
the leukemia data, there are 7,070 genes. Microarrays today typically have between
10,000 and 30,000 genes, and it is probable that in the future there will be arrays for
each splice variant of every human gene, with perhaps as many as 300,000 features.

There is a serious consequence of performing statistical tests on many genes in
parallel, which is known as multiplity of p-values. Suppose we perform a thought
experiment, in which we had microarrays with 10,000 genes. We take a large supply of
reference sample, label it with Cy3 and Cy5, and co-hybridise the reference sample to
a number of arrays. We take the data, perform appropriate normalisation to remove
dye bias, and perform our statistical analysis of choice to the 10,000 genes: this could
be a t-test, a Wilcoxon test, or a bootstrap test.

Since every sample hybridised to the arrays is the same reference sample, we know
that no genes are differentially expressed: all measured differences in expression are
experimental error. But our statistical analysis will tell us a different story. By the very
definition of a p-value, each gene would have a 1% chance of having a p-value of less
than 0.01, and thus be significant at the 1% level. Because there are 10,000 genes on
this imaginary microarray, we would expect to find 100 significant genes at this level.
Similarly, we would expect to find 10 genes with a p-value less than 0.001, and 1 gene
with p-value less than 0.0001.

Now consider data set 7A, with 9,216 genes. Even if the chemotherapy had no
effect whatsoever, we would expect to find 92 “differentially expressed” genes with
p-values less than 0.01, simply because of the large number of genes being analyzed.
This leads to an important question: how do we know that the genes that appear to
be differentially expressed are truly differentially expressed and are not just artifact
introduced because we are analyzing a large number of genes? More concretely, how
would we interpret our result for ACAT2 (Example 7.4)? Is this gene truly differentially
expressed, or could it be a false positive result?

This is a deep problem in statistics, which affects many applications, and not just
microarray analysis. We will describe a simple method that can be used to estimate
the percentage of genes that have been called up- or down-regulated that are likely
to be false positives. A more sophisticated method is implemented in the SAM soft-
ware. We will also describe the Bonferroni correction and demonstrate that this is not
appropriate for microarray analysis.

Estimation of False Positive Rate

We describe a simple but effective analysis to estimate the false positive rate of a
statistical test and thereby choose an appropriate p-value threshold for significantly
differentially expressed genes that gives an acceptable false positive rate. There are
five steps:

1. Perform the statistical analysis of choice on every gene being analyzed and
record the p-value for each gene.
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TABLE 7.8: Number and Percentage of False Positives in the Breast Cancer Analysis

For eachp-value threshold, we count the number of genes observed in the data withp-values less than
that threshold. This is compared with the expected number of false positives, which is the number of
genes being tested multiplied by thep-value threshold. The percentage of false positives is the expected
number of false positives divided by the observed number of genes. The smaller the threshold used,
the fewer false positives, and the better the false positive rate. However, this is at the cost of introducing
greater numbers of false negative results.

p-Value Less Than or Observed Number of Expected Number of Percentage of False
Equal To Genes False Positives Positives

10−2 184 64 35
10−3 35 6 18
10−4 15 0.6 4
10−5 6 0.06 1

2. For an appropriate range of significance thresholds, identify the number of
genes with p-values less than that threshold.

3. For the same significance thresholds, calculate the expected number of false
positives by mutliplying the p-value by the number of genes being analyzed.

4. For each threshold, the percentage of false positives is the expected number of
false positives divided by the number of genes identified as expressed at that
threshold.

5. Choose a threshold that gives an acceptable false positive rate.

EXAMPLE 7.11 MULTIPLICITY OF p-VALUES IN DATA SET 7A

We performed a bootstrap test on 6,350 genes for which there was data from all
20 patients from data set 7A, using 100,000 bootstrap data sets. In Table 7.8, we
show number of genes from the breast cancer data with different ranges of p-values,
alongside the number of genes expected to have those p-values from the multiple
testing.

We can see from Table 7.8 that using a traditional significance threshold of 1%,
which would be stringent in classical statistics, we would expect to see 64 genes sig-
nificantly differentially regulated; with the real data, we see 184 differentially expressed
genes. Thus we estimate that 35% of these are false positive results.

On the other hand, the expected number of false positives with p-value less than
0.0001 is 0.6, so it is likely that 14 or 15 out of the 15 observed differentially expressed
genes are true positive results. However, at this more stringent level, we will be missing
at least 100 truly differentially expressed genes: our false negative rate has increased.

This illustrates the trade-off that is always played between controlling false positive
and false negative results: a more stringent p-value threshold may lead to fewer false
positives, but will give more false negatives; a less stringent p-value may give fewer
false negatives, but will give more false positives. The only way to improve both rates
is to increase the number of individuals in the study; this is discussed in Chapter 10.
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TABLE 7.9: Significant Genes from the Breast Cancer Data Set

The unadjusted p-values are the proportion of the 100,000 bootstrap data sets that had t-statistics
more extreme than the t-statistic from the real data. Thus the smallest possible p-value is 1/100,000
(or 10−5). Because of the number of genes in the analysis, the Bonferroni corrected p-values are all
too large to be significant, illustrating that this method is not applicable to most microarray data.

Bonferroni Adjusted
Accession Description p-Value p-Value

AA598794 connective tissue growth factor 10−5 0.064
N23941 cyclin-dependent kinase inhibitor 1A 10−5 0.064
AA478553 dopachrome tautomerase 10−5 0.064
W96134 v-jun avian sarcoma virus 17

oncogene homolog
10−5 0.064

AA044993 connective tissue growth factor 10−5 0.064
AA040944 v-fos FBJ murine osteosarcoma viral

oncogene homolog
10−5 0.064

N95402 copine V 2×10−5 0.13
R12840 v-fos FBJ murine osteosarcoma viral

oncogene homolog
3×10−5 0.19

AA442853 cyclin-dependent kinase 5, regulatory
subunit 1 (p35)

4.×10−5 0.25

AA418077 GTP-binding protein overexpressed in
skeletal muscle

5×10−5 0.32

AA133129 transcription elongation factor B
(SIII), polypeptide 3

5×10−5 0.32

AA485377 v-fos FBJ murine osteosarcoma viral
oncogene homolog

6×10−5 0.38

AA134757 fibulin 1 6×10−5 0.38
AI831083 dihydropyrimidinase-like 3 7×10−5 0.45
AA004637 ESTs 9×10−5 0.57
No Annotation 1.2 × 10−4 0.76
AA025939 CD4 antigen (p55) 2×10−4 1.3
H21041 activating transcription factor 3 2.3×10−4 1.5
AA449463 KIAA0220 protein 2.6×10−4 1.7
H05099 KIAA0182 protein 3.8×10−4 2.4

EXAMPLE 7.12 CHOOSING DIFFERENTIALLY EXPRESSED GENES FROM DATA
SET 7A

In an example analysis of data set 7A, we decided that it was important not to have false
positive results. Therefore, we set a p-value threshold so that the expected number of
false positive results was 1; this threshold is equal to the reciprocal of the number of
genes tested, or 1/6350 = 1.6 × 10−4. The top 20 genes from the analysis are listed in
Table 7.9. We can see from the table that there are 16 genes that pass this threshold;
the false positive rate is thus approximately 1 in 16, or about 6%.

Bonferroni Adjustment

The final column in Table 7.9 gives Bonferroni adjusted p-values. The Bonferroni
correction is a traditional approach for modifying thep-values when performing many
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statistical tests in parallel. It is very similar to the approach we described, but more
stringent. p-Values are calculated in the normal way via the statistical test of choice,
and thep-values are then all multiplied by the number of tests being performed. In the
case of gene expression analysis, the p-values would all be multiplied by the number
of genes in the analysis.

The problem with the Bonferroni adjustment is that it is usually too stringent for
microarray analysis. The p-values obtained are frequently so large that no genes are
deemed differentially expressed. The next example illustrates this.

EXAMPLE 7.13 BONFERRONI ADJUSTED p-VALUES FOR DATA SET 7A

The Bonferroni correction is applied to the breast cancer data of Example 7.12. There
are 6,350 genes tested, so eachp-value is multiplied by 6,350 (Table 7.8). Even if we use
a liberal significance threshold of 5%, not a single gene would be listed as significant,
so this would not be a good method for analyzing this data.

SECTION 7.6 ANOVA AND GENERAL LINEAR MODELS

Up to this point, we have described methods for analyzing very simple experiments for
differentially expressed genes, in which the data is either paired, with two biological
samples derived from the same individual, or unpaired, with two groups of individuals
being compared.

Increasingly, microarrays are being used to perform more complex experiments,
in which there may be more than two groups, or in which the response to more than
one variable is being measured. These types of experiments require more sophisti-
cated analyses known as ANOVA and general linear models. We will introduce these
ideas very briefly; there are many intermediate-level and advanced-level statistics text
books that the interested reader can consult for greater detail. These methods are also
implemented in all statistics software, for example, SPSS, SAS, S+ and R, which all
have documentation to describe how to use them.

The One-Way ANOVA

Data set 7B had two groups of patients, and we were interested in comparing gene
expression in the two groups to identify differentially expressed genes. Suppose in-
stead there were three groups of patients, and we were interested in identifying genes
that were differentially expressed on one or more of the groups relative to the others.
There are two ways we could perform the analysis:

� Naively, we could apply an unpaired t-test three times, to each pair of groups in
turn, and select genes that are significant in one or more of the t-tests.

� Instead, we could use a statistical test that compares all three groups simulta-
neously and reports a single p-value.
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There are two problems with the first method. The first is multiplicity: by performing
three tests, we increase the likelihood of seeing a significant difference between two of
the groups as a result of measurement errors. This problem gets worse as the number of
groups increases: for example, with 7 groups, there would be 21 separate comparisons.
The second problem is that each of these comparisons is not independent of the other,
so it becomes very difficult to interpret the results.

The approach taken by statisticians is the one-wayANOVA. This performs an anal-
ysis of this type of data, where we are comparing two or more groups, and returns a
single p-value that is significant if one or more groups is different from the others.

EXAMPLE 7.14 DATA SET 7C AND ANOVA ANALYSIS

In data set 7C, samples were taken from four groups of patients suffering from four
different types of cancer: neuroblastoma (NB), non-Hodgkin lymphoma (NHL), rhab-
domyosarcoma (RMS) and Ewing tumours (EWS). If we wanted to identify genes that
are differentially expressed in one or more of these four groups, we use a one-way
ANOVA. This is much better than performing six separate tests to compare all of the
groups with the others.

Multifactor ANOVAs

In the preceding example, there is only one variable that affects gene expression:
the group to which the individual belongs, which in data set 7B or 7C, is the type
of cancer the patient is suffering from. Suppose, however, we are analysing data in
which the patients are suffering from two types of leukemia, and we also know the
sex of the patients, who may be male or female. In this case, gene expression could
depend either on the type of disease, on the sex of the patient, or both. More general
ANOVA models can be built that include two or more factors and that will return a
p-value for each of the factors separately. In this example, there would be one p-value
for whether or not the gene is differentially expressed because of disease type, and
another p-value for whether or not the gene is differentially expressed because of the
sex of the patient.

With multifactor ANOVAs, it is possible for two factors to behave together in an addi-
tive or multiplicative fashion. If the response to the two factors is additive, then the ef-
fect of one factor does not influence the effect of the other. However, suppose there is a
gene that is differentially expressed in male ALL patients relative to male AML patients,
but which is not differentially expressed in women. In that case, the factors are behav-
ing multiplicatively, and statisticians talk about an interaction between the factors.
The statistics packages allow for the user to build interactions into the ANOVA models.

Frequently in microarray analysis, there may be factors in the experiment that are of
no intrinsic scientific interest, but which can influence the observed gene expression.
For example, there may be two or more scientists performing the hybridisations. In
such cases, we may want to include these factors into the statistical model; such factors
are called random effects and have to be handled slightly differently.
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General Linear Models

ANOVA analyses are appropriate where the factors on which gene expression depends
are allcategoricalvariables, such as type of disease or sex of the individual. Sometimes,
however, we may have factors that are continuous variables, for example, the dose of
compound added to a sample. If it is thought that the gene expression responds in a
linear fashion to such a variable, then statisticians will use general linear models to
analyse the data.

General linear models can combine both categorical variables and continuous
variables; thus, they are generalizations of both ANOVAs and linear regressions. As
with ANOVA models, the general linear model returns a separate p-value for each
of the factors being tested. It is also possible for general linear models to include
interactions. Suppose we have an experiment in which different doses of a compound
are given to male and female mice: if the dose response is different in females vs. males,
then there is an interaction between these factors.

Both ANOVA models and general linear models are similar to t-tests in that they
require that variability in the data is normally distributed. However, it is possible
to apply bootstrap analyses to these more sophisticated tests, which makes them
applicable to microarray analysis. This approach has been taken in many of the papers
describing the applications of ANOVA to microarrays.

KEY POINTS SUMMARY

� Statistical analyses for differentially expressed genes are best carried out via hy-
pothesis tests rather than using a simple fold ratio threshold.

� The structure of your data might be paired, unpaired, or more complex.
� The traditional t-tests may not be appropriate for microarray data because they

require that the data are normally distributed.
� Non-parametric tests are robust to experimental noise and bootstrap tests are the

most powerful versions available.
� The large number of genes being tested introduces the problem of multiplicity, and

so it is important to perform an analysis of the false positive rate.
� More complex data may require analysis via ANOVA or general linear models and

may also include bootstrapping.
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CHAPTER EIGHT

Analysis of Relationships Between Genes,
Tissues or Treatments

SECTION 8.1 INTRODUCTION

Microarrays are a genomic technology. Genomics is different from genetics in that
it looks not at genes in isolation, but at how many genes work together to produce
phenotypic effects. In Chapter 7 we saw how microarrays can be used to study genes in
isolation. But much of the real power of microarrays is their ability to be used to study
the relationships between genes and to identify genes or samples that behave in a
similar or coordinated manner. This chapter looks at a number of analysis techniques
to find and verify such relationships.

We will use two example data sets to examine the ideas of this chapter.

EXAMPLE 8.1 YEAST SPORULATION DATA (DATA SET 8A)

Budding yeast can reproduce sexually by producing haploid cells through a process
called sporulation. Yeast was placed in a sporulating medium, and samples were taken
at six time points following the start of sporulation and hybridised to microarrays. We
want to identify groups of genes that behave in a coordinated manner in this time
series.1

EXAMPLE 8.2 DIFFUSE B-CELL LYMPHOMA SUBTYPES (DATA SET 8B)

Samples were taken from 39 patients suffering from diffuse large B-cell lymphomas
and hybridized to microarrays. We want to identify genes that are co-regulated in this
disease. We are also interested in whether there are groups of patients with similar
gene expression profiles.2

This chapter discusses methods that can be used to answer such questions; it is
organised into the following five sections:

Section 8.2: Similarity of Gene or Sample Profiles, looks at different methods for
quantifying the similarity or dissimilarity of gene expression profiles. We show
how the different methods can give different results and, hence, the need to think
carefully about choosing the method you use.

1 The data are taken from the work of Chu et al. (1998). The full reference is given at the end of the
chapter, and the data are available from the Stanford Microarray Database.

2 The data are taken from the work of Alizadeh et al. (2000). The full reference is given at the end of
the chapter, and the data are available from the Stanford Microarray Database.
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Section 8.3: Dimensionality Reduction, describes two methods for reducing the di-
mensionality of data: principal component analysis and multidimensional scal-
ing. One of the problems of microarray data analysis is that it is very difficult
for the human brain to conceptualise the large number of genes and samples
typically involved. For example, in data set 8B, there are 40 samples hybridised
to microarrays with nearly 18,000 genes. These methods can reduce the data to
two or three dimensions, allowing the human user to easily visualise it; these are
also useful tools for using the classification methods described in Chapter 9.

Section 8.4: Hierarchical Clustering, introduces the most commonly used method
for identifying groups of closely related genes or tissues. Hierarchical clustering
is a method that successively links genes or samples with similar profiles to form
a tree structure – much like a phylogenetic tree. We describe different versions of
the algorithm and show how they can give different results from the same data.

Section 8.5: The Reliability and Robustness of Hierarchical Clustering, describes
methods for validating hierarchical clustering. We focus on bootstrapping and
consensus tree construction, which can be used both to validate clusters and to
place a numerical measure of confidence on them.

Section 8.6: Machine-Learning Methods for Cluster Analysis, describes two further
methods for clustering data, both of which derive from the machine-learning
community. K-means clustering is a method of non-hierarchical clustering that
requires the analyst to supply the number of clusters in advance and then al-
locates genes or samples to clusters appropriately. The self-organised map is a
related method that allocates genes or samples to a predefined number of clus-
ters that relate to each other on a spatial grid. Both methods are implemented in
a wide range of gene expression analysis software packages.

SECTION 8.2 SIMILARITY OF GENE OR SAMPLE PROFILES

When we use microarrays as a genomic research tool, we want to identify genes or
samples that have similar expression profiles. Given graphs or charts of such profiles,
most people would have a good intuition about what this means. When we perform
computational data analysis, we need to be able to transform this intuition into quan-
titative measures that can be computed by software, and which reflect this intuition
in a reliable and robust way.

In this chapter, we have deliberately chosen two quite different data sets: data set
8A is a time series, and data set 8B looks at samples from a cohort of patients. We will
describe a number of measures of similarity between profiles and show examples of
these measures applied to them. We will then show how two profiles can be similar
under one measure, but different under another – hence, the importance of choosing
an appropriate similarity measure for the analysis techniques described later in the
chapter.

There are two ways to analyse microarray data: either we are interested in the
similarity of genes, or we are interested in the similarity of samples. In the first case,
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Figure 8.1: Two ways to look at the same data. The data matrix of m samples and n genes can be
analysed in two ways. Either we look for relationships between the genes, using the expressions in each
of the samples as measurements of the genes, or we look for relationships between the samples, using
the expressions in each of the genes as measurements of the samples.

each gene is measured by the samples; in the second case, each sample is measured
by the genes (Figure 8.1).

From a scientific perspective, these are very different analyses. From the perspective
of the data analysis methods in this chapter, they are essentially the same. Therefore,
throughout this chapter, we shall refer to gene profiles with the understanding that
these might be gene or sample profiles.

Features of a Distance Measure

It is common to describe the similarity between two profiles in terms of the dis-
tance between them in the high-dimensional space of gene expression or sample
measurements. Before we describe any specific measures of distance, we first set out
some theoretical properties that a measure of similarity (or dissimilarity) between two
genes should have. These may appear obvious, but they are very important if one is
to use a measure of similarity as part of a successful data analysis.

� The distance between any two profiles must be greater than or equal to zero –
distances cannot be negative.

� The distance between a profile and itself must be zero.
� Conversely, if the difference between two profiles is zero, then the profiles must

be identical.
� The distance between profile A and profile B must be the same as the distance

between profile B and profile A.
� This distance between profile A and profile C must be less than or equal to the

sum of the distances between profiles A and B and profiles B and C.

The first four rules are very intuitive; the last rule is what is known as the triangle
inequality (Figure 8.2).
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Figure 8.2: The triangle inequality. The triangle ABC has dis-
tances AB, AC and BC. These distances satisfy the following equa-
tions:

AB ≤ AC+ BC
AC ≤ AB+ BC
BC ≤ AB+ BC

These equations mean that the length of each side is less than
or equal to the sum of the lengths of the other two sides. If the
lengths are equal, then all three points are on a straight line and
the triangle is completely flat.

Correlation Coefficient

The first measure of similarity we describe is the correlation coefficient. This is a
statistical concept that quantifies the level of relationship between two sets of mea-
surements (Figure 8.3).

If we denote the two sets of measurements with the notation (xi) and (yi), where
i is an index from 1 to n, then the correlation coefficient r is given by the following
formula:

r = n
∑n

i=1 xi yi − ∑n
i=1 xi

∑n
i=1 yi√(

n
∑n

i=1 x
2
i − (∑n

i=1 xi
)2

) (
n

∑n
i=1 y

2
i − (∑n

i=1 yi
)2

) (Eq. 8.1)

The correlation coefficient takes a value from between −1 and +1. A value of −1
represents strong negative correlation: when one variable is high, the other is low. A
value of +1 represents strong positive correlation: when one variable is high, the other
is high. A value of 0 represents uncorrelated variables.

It is common to centre gene expression profiles (Section 5.4) to ensure that they have
mean equal to 0 and standard deviation equal to 1 before calculating the correlation
coefficient. When the profiles have been centred, the correlation coefficient is given
by a much simpler formula3:

r =
n∑
i=1

xi yi (Eq. 8.2)

Centering data is an excellent method for data similar to those in data set 8B, where
we are looking at the expression of genes in patients relative to a reference sample.
However, when we are analysing time series data, as in data set 8A, where the data is
relative to gene expression at time zero, centering can lose the natural notion of genes
that are up- or down-regulated in the time series. This can be a disadvantage.

The correlation coefficient is a measure of similarity and needs to be converted into
a distance measure with the properties listed earlier. There are a number of formulae

3 This formula is the dot product of the two sets of measurements (xi ) and (yi ) when thought of as
vectors in n-dimensional space. The dot product measures the angle between the two vectors, and
so the correlation coefficient has a geometric interpretation: parallel vectors have correlation +1
or −1, whereas orthogonal vectors have correlation coefficient 0. To convert this to a distance, we
need to apply Equation 8.3 or 8.4 so that parallel vectors have distance 0 and orthogonal vectors
have distance 1.
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that can be used to achieve this, including the following:

d (X,Y) = 1 − abs(r (X,Y)) (Eq. 8.3)

d (X,Y) = 1 − r (X,Y)2 (Eq. 8.4)

Equation 8.3 states that the distance between profile X and profile Y is equal to one
minus the absolute value of the correlation coefficient between X and Y. So if X and
Y are perfectly negatively or positively correlated (r = −1 or r = 1, respectively), the
distance between them is zero, and if they are perfectly uncorrelated, the distance be-
tween them is 1. Equation 8.4 is very similar, but subtracts the square of the correlation
coefficient instead of its absolute value.
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Figure 8.3: Correlated and uncorrelated variables. These three figures show examples of correlated
and uncorrelated variables using data from data set 8B. For each gene, we have computed the log ratio
of the intensity of that gene relative to the reference sample. Each gene has then been centred so that
the values for each gene have mean 0 and standard deviation 1. Each point on the graphs represents
one of the 38 patients, where the x-axis value is the log ratio of one gene and the y-axis value is the
log ratio of the other gene. (a) The genes Natural Kill Cell Group 7 (NKG7) and Immunoglobulin Kappa
Constant (IGKC) are strongly positively correlated (r = 0.97). The 38 points lie on a straight line from
bottom left to top right. (b) The two unannotated genes FLJ13207 andMGC10771 are weakly negatively
correlated (r = −0.47). The 38 points lie approximately on a line from top left to bottom right – but this
is largely the effect of the three measurements at the top left of the plot, and the three measurements
at the bottom right. The majority of points are in a cloud in the middle. (c) The genes Stromal Antigen
3 (STAG3) and Src-like-adapter are not correlated (r = 0.054). The 38 points lie in a cloud around zero
with no discernable trend.

(continued )
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Figure 8.3: (continued )
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Spearman Correlation

One of the problems with using the standard correlation coefficient just given is that
it is susceptible to being skewed by outliers: a single data point can result in two genes
appearing to be correlated, even when all of the other data points suggest that they are
not. Spearman correlation is a non-parametric measure of correlation that is robust
to outliers and, because of this, it is often more appropriate for microarray analysis.

EXAMPLE 8.3 FALSELY CORRELATED TIME SERIES

Figure 8.4 shows two genes from the time series data set 8A, ENB1 and NPR2, which
appear to be reasonably correlated, with a Pearson correlation coefficient of 0.63.
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Figure 8.4: Falsely correlated time series. We show data from two genes from data set 8A: ENB1
and NPR1. (a) Correlation plot. For this plot, the values of each time series have been centred so that
they have mean 0 and standard deviation 1. The correlation coefficient is 0.63, a medium-size positive
correlation. The positive correlation is a result of the single outlier at the bottom left of the figure. The
other data points are not positively correlated. (b) Time series plot. On this graph, we have plotted the
log ratio (to base 2) of the signal at each time point relative to the signal at time 0. The two graphs show
no relationship at all. The “outlier” that results in the strong correlation is at 30 minutes, where both
genes are down-regulated. However, the behaviour of the two genes after the initial down-regulation
is completely different, with ENB1 showing decreasing expression and NPR2 showing an increase in
expression. (c) Ranked plot. The values on the time series have been ranked so that the lowest value
in each time series has rank 1, and the highest rank 6, and then plotted. There does not appear to be
a correlation between the ranked time series.

(continued )
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Figure 8.4: (continued )
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TABLE 8.1: Spearman Correlation

Time ENB1 Ratio NPR2 Ratio ENB1 Rank NPR2 Rank

0.5 −0.76359 −4.05957 1 1
2 2.276659 −1.7788 6 2
5 2.137332 −0.97433 5 4
7 1.900334 −1.44114 4 3
9 0.932457 −0.87574 3 5

11 0.761866 −0.52328 2 6

Note: The uncentred ratios for each of the six time points for the genes ENB1 and NPR2 are shown
in columns 2 and 3. The ranks are calculated by ordering the values for each gene and assigning the
value 1 for the lowest measurement, up to 6 for the highest measurement. Equation 8.1 is then applied
to calculate the correlation coefficient: in this case the correlation is −0.09 (marginally negatively
correlated). However, the Pearson correlation is 0.63 (reasonably strongly correlated).

However, we can see from Figure 8.4a that the reason for this correlation is the outlier
in the bottom-left corner; if this were removed, the points would not appear to be
positively correlated. The situation is reflected in the time series charts (Figure 8.4b):
the genes do not appear to be related.

Outliers are a serious and common problem with microarray data; this is partly
because the data can be noisy, and partly because of the large number of genes being
studied. Spearman correlation provides a measure of correlation that is robust to large
outliers.

Spearman correlation works in a similar manner to the non-parametric tests de-
scribed in Chapter 7. The true measurements or log ratios are replaced by ranks: 1
for the smallest value, 2 for the second smallest, and so on.4 Equation 8.1 is then
applied to the ranked data, producing a correlation coefficient that also lies between
−1 and 1. To use Spearman correlation as a distance measure, we apply Equation 8.3
or 8.4 so that uncorrelated variables have distance 1 and correlated variables have
distance 0.

EXAMPLE 8.4 SPEARMAN CORRELATION OF ENB1 AND NPR2

The procedure for calculating the Spearman correlation can be seen in Table 8.1. The
Spearman correlation of these genes is −0.09, compared with the Pearson correlation
of 0.63. This is a very different result: instead of being positively correlated, the time
series are probably not correlated (Figure 8.4c).

In general, Spearman correlation is a more robust measure of correlation than
Pearson correlation and can therefore be more appropriate for microarray data, par-
ticularly if the data are noisy. However, as with the centering of the data for Pearson
correlation, the direction of regulation of the genes is lost during the ranking process.

4 Tied data points are given the average of the tied ranks. For example, if the two smallest data points
were tied, then both points would be given a rank of 1.5.
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Figure 8.5: Euclidean distance. The distance between
the two points X and Y in two-dimensional space, with
coordinates (x1,y1) and (x2,y2), is given by the Pytha-
gorean theorem:

d (X,Y) =
√
(x1 − y1)2 + (x2 − y2)2

This concept extends naturally to higher dimensions
(Equation 8.5).

This is not a problem with patient data (e.g., data set 8B), but can give problems with
time series data (e.g., data set 8A). We show an example of this later.

Euclidean Distance

Euclidean distance is very different from correlation as a measure of the relationship
between gene expression profiles. Euclidean distance is an extension of distance that
we are used to in real life: the straight-line distance between points in two- or three-
dimensional space.

In two dimensions, the distance between two points is calculated using the
Pythagorean theorem (Figure 8.5). When we use Euclidean distance with gene expres-
sion profiles, we extend the same idea to high dimensions. Using the same notation as
before, the Euclidean distance between two profiles X and Y is given by the following
equation:

d (X,Y) =
√√√√ n∑

i=1

(xi − yi)2 (Eq. 8.5)

EXAMPLE 8.5 EUCLIDEAN DISTANCE IS NOT SCALE INVARIANT

One of the key problems with Euclidean distance is that it is not scale invariant: two
gene expression profiles with the same shape but different magnitudes will appear to
be very distant. The genes BUR6 and IDH1 from data set 8A have similar profiles of
up-regulation, reaching peak gene expression at 7 hours (Figure 8.6). However, BUR6

Figure 8.6: Euclidean distance is not scale invariant. The two genes BUR6 and IDH1 from data set 8B
are shown. Both genes have similar profiles and are up-regulated, reaching maximum gene expression at
7 hours. (a) Log ratio data. Although the profiles have very similar shape, BUR6 is considerably more up-
regulated, achieving a maximum of about 5 (approximately 30 times up-regulution) while IDH1 achieves
of a maximum of about 2 (approximately 4 times up-regulation). The Euclidean distance is 5.8 (a large
value). (b) The data have been scaled by dividing each profile by the standard deviation of the absolute
values of the time points. This method preserves the direction of regulation of the genes relative to time
zero. The Euclidean distance is 0.88 (a much smaller value).
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is more up-regulated than IDH1. The Euclidean distance between these genes is very
large, even though the profiles are very similar in shape.

This problem can be resolved by centering the profiles. When the profiles have
been centred, the Euclidean distance is very small (Figure 8.6b).

EXAMPLE 8.6 EUCLIDEAN DISTANCE AND CORRELATION CAN GIVE
DIFFERENT RESULTS

In Figure 8.7, we show two examples of gene profiles that are similar by correlation
but different by Euclidean distance.

The first example is from data set 8B, where we are looking to identify genes with
similar behaviour in different patients. In this case, Spearman correlation gives a more
robust result: the data are positively correlated, but a single outlier in the opposite
direction from the correlation has resulted in a large Euclidean distance.

The second example is time series data from data set 8A: two genes have similar
shape profiles, but one is up-regulated and the other is down-regulated. They appear
to be correlated, although the expression is very different; the Euclidean distance is
large, reflecting the difference between the patterns. In this case, Euclidean distance
is probably a more realistic measure.

From these examples, we can see that when choosing a distance measure to use
for further analysis, such as the cluster analyses we describe later in the chapter, there
is no one answer as to what is the best measure. Different measures have different
strengths and weaknesses and can be combined with different data scaling to produce
different results (Table 8.2).

SECTION 8.3 DIMENSIONALITY REDUCTION

One of the central features of microarray data is that there is a lot of it. In mathematical
terms, we talk about the data being high-dimensional: by this we simply mean that we
are measuring a large number of genes, or a large number of samples, and frequently
both (e.g., data set 8B).

Figure 8.7: Differences between Euclidean distance and Spearman correlation. (a) Data from data
set 8B where the Euclidean distance is large (7.9) but the Spearman correlation is also strong (r = 0.79
or distance = 0.21). The plot shows centred data (to have mean 0 and standard deviation 1) for the
two genes Cyclin Dependant Kinase Inhibitor 2A (CDKN2A) and Cofactor for Transcriptional Activation
Subunit 3. The two genes are positively correlated, but there is a single outlier that is in the opposite
direction of the main trend (bottom-right-hand corner of the figure). This single outlier results in a
high Euclidean distance, while Spearman correlation detects the correlation. In this case, Spearman
correlation is probably a better measure of similarity. (b)Data from data set 8A where Euclidean distance
is large (8.5) but the Spearman correlation is very strong (r = 0.91 or distance = 0.09) for the two genes
CAR2 and FYV4. The plot shows the log ratio data (to log 2); the Euclidean distance has been calculated
on data that have been scaled by the standard deviation of the absolute values of the ratios. In this
case, CAR2 is about 4-fold down-regulated after 30 minutes, while FYV4 is about 5-fold up-regulated at
that time. After 30 minutes, the genes have similar shape, but FYV4 remains up-regulated, while CAR2
switches from being down-regulated to being up-regulated. In this case, Euclidean distance is probably
a better measure of similarity.
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TABLE 8.2: Strengths and Weaknesses of Different Distance Measures

Pearson Correlation Spearman Correlation Euclidean Distance

� Powerful
� Spots positive and negative

correlations
� Scale invariant on centred

data
× Assumes linearity
× Susceptible to outliers

� Robust to outliers
� Spots positive and negative

correlations
� Completely scale invariant: no

scaling or centering required
× Less powerful
× Ignores pattern of up- or

down-regulation in time series

� Geometric interpretation
� Can retain up- or down-regulation

information with appropriate
scaling

� Can detect magnitude of changes if
used without scaling

× Not scale invariant: results depend
on scaling used

× Cannot detect negative correlations

Often, we want to visualise microarray data, either as an aid to visual analysis or
as a precursor to the application of more sophisticated algorithms. The human brain
has evolved to be able to visualise objects in two or three dimensions: we live in a
three-dimensional world, and we see via the stereoscopic combination of two two-
dimensional images from our eyes. Our principal tools for visualising microarray data
are themselves two-dimensional: computer screens, projector images, research pa-
pers and books. This makes the visualisation of microarray data difficult: we are trying
to represent very high-dimensional data in the two or three dimensions described.

This section describes two methods for visualising microarray data in two or three
dimensions: principal component analysis andmultidimensional scaling.

Principal Component Analysis

Imagine a cloud of points in three-dimensional space. Now imagine placing a piece
of card behind the points and looking at the shadows of the points on the card: we
have projected a three-dimensional group of points onto a two-dimensional space.
Principal component analysis (PCA) is a method that projects a high-dimensional
space onto a lower dimensional space. We choose the angle at which to look at the
high-dimensional space so that we capture as much of the variability of the original
data as we can in the lower dimensional space and then ignore the other dimensions.

EXAMPLE 8.7 PRINCIPAL COMPONENT ANALYSIS OF A PEN

Suppose we have a pen in three dimensions, and we want to construct a two-
dimensional view of that pen. If we look at the pen from one end, all we see in two
dimensions is a circle with a bump (Figure 8.8a). If we rotate the pen so that we are
looking at it lengthwise, but hide the clip, we can see that we have a long object, which
is fatter at the end with the cap (Figure 8.8b). In this rotation, we have resolved the
first principal component by finding the axis with maximum variability in the shape
of the pen: the long side.

If we rotate the pen further, so that we can see the clip, it is now recognisable as
a pen (Figure 8.8c). In this second rotation, we have resolved the second principal
component: we have found the axis that is perpendicular to the first axis that contains
the most remaining variability.
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(a)
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Figure 8.8: Principal component analysis of a pen. (a) Pen looked at end-on. No principal components
have been resolved. The pen is not recognisable. (b) Pen looked at sideways with clip obscured. The
first principal component is resolved; we can see that the object is “long” and wider at one end, but
that the clip is obscured. (c) Pen looked at sideways showing clip; it should be recognisable as a pen.
The second principal is resolved; we can now see that the clip and the object is recognisable as a
pen. Even in (c), some information is lost. We do not know that the pen is round; it could be a square
pen.

How PCA Works

Suppose we want to reduce a microarray experiment with 10,000 genes into two or
three dimensions. We first construct what is known as the variance–covariancematrix
for these genes. This matrix captures the variability of each gene and the extent to
which it co-varies (equivalent to correlation) with every other gene. So we would have
a 10,000 × 10,000 element array. We use this array to identify a new variable that is
a linear combination of the genes and that has the maximum amount of variance.
This is the first principal component (Figure 8.9). We then find the variable that is
orthogonal to this first variable and that maximises the remaining variance. This is the

1st

2nd

(a) (b)

1st

2nd

1st

(c)

Figure 8.9: Principal component analysis on a simple, imaginary, two-dimensional data set. The
data set is two-dimensional and consists of two elliptical “clusters.” (a) The components are not re-
solved. (b) The first component is along the direction of the maximum variability, in which the clusters
become separated. Because the data is only two-dimensional, we have no choice about the second
component, which must be orthogonal to the first. (c) We can resolve these two-dimensional data into
just one dimension and see the clusters in the data.
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Figure 8.10: Principal component analysis of yeast sporulation data. Principal component analysis
is performed on the 1,000 most varying genes from data set 8A in order to be able to visualise the
similarity among the six samples. The plot shows a number of interesting features:

� The six samples follow a clear pattern in the principal component plot; the analysis makes bio-
logical sense.

� If we look at just the first principal component, then the samples taken at 7, 9 and 11 hours
all cluster together, while the earlier samples resolve (in order). This implies that the three late
samples are fairly similar to each other, and that the main transcription changes occur over the
first 7 hours.

� The second principal component resolves the three later time points; interestingly, the latest
time points have similar value to the earliest. This suggests that there may be some transient
processes that are switched on over the first 5 hours and then switched off.

second principal component. We repeat the process until we have as many principal
components as we are interested in.

EXAMPLE 8.8 PRINCIPAL COMPONENT ANALYSIS OF YEAST SPORULATION DATA

We want to see the relationship between the six time points of data set 8A. We cannot
visualise all 6,000 genes, so we use PCA to visualise the relationship between the time
points in a two-dimensional plot. This is a good illustrative example because we have
an a priori expectation that neighbouring time points should be similar.

In this example, PCA reveals three interesting features about the data (Figure 8.10):

� Neighbouring time points are close to each other on the figure; we can even
see the “path” taken by the time series through the principal component space.
From this we conclude that the analysis makes biological sense.
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TABLE 8.3: Principal Components of Data Set 8A

Principal Component 1st 2nd 3rd 4th 5th

Standard deviation 30.3 11.3 9.1 5.9 5.3
Proportion of variance 77% 11% 7% 3% 2%
Cumulative proportion 77% 88% 95% 98% 100%

Note: The first five principal components explain essentially all of the variability in the 1,000 genes
used for this analysis. So although we are looking at a very large number of genes, there are not many
different processes in this experiment: 88% of the variability is explained by the two components used
for Figure 8.10. Therefore, this figure is a good representation of the similarities and differences among
the six samples.

� If we just look at the first principal component (x axis), the samples at 7, 9 and
11 hours are clustered together, while the other three time points are resolved,
in order, along the axis.

� The second principal component resolves the three later time points, but, in-
terestingly, the trend in the second principal component is a rise in value to the
5-hour sample, and then a return, so that the latest samples are most similar to
the earliest.

The behaviour of these two components suggests two sets of processes: one set
of processes that changes over a period of 7 hours and persists in the altered state
during sporulation (corresponding to the first principal component), and another
set of processes that are activated over a period of 5 hours, but which then return
to their original state (corresponding to the second principal component). So simply
by looking at the principal component plot, we can gain an understanding of the
underlying biology.

PCA also identifies the amount of variability captured in each of the components
(Table 8.3). In this example, most of the variability (77%) is captured in the first com-
ponent, and 88% in the first two; five components capture all of the variability of the
data. We therefore expect that this particular example is biologically relatively simple,
with a small number of pathways in action during sporulation. With more complex
data, the variability can be spread over many principal components.

Multidimensional Scaling

Multidimensional scaling (MDS) is a different approach to dimensionality reduction
and visualisation. Unlike PCA, it does not start from the data, but rather from the
measurements of distance between the samples or profiles being compared.

We measure the distance between profiles using any of the measures described in
Section 8.2. MDS then attempts to locate the profiles in two- or three-dimensional
space in such a way that the distances in the two- or three-dimensional space are
as close as possible to the distances measured between the profiles in the higher
dimensional space.
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TABLE 8.4: Multidimensional Scaling of Data Set 8A

Measured Distance Between Profiles (Scaled Distance in Parentheses)

0.5 h 2 h 5 h 7 h 9 h

Euclidean distance
2 h 31 (22)
5 h 55 (54) 38 (33)
7 h 71 (70) 58 (53) 31 (23)
9 h 68 (67) 55 (53) 31 (27) 22 (9)

11 h 73 (71) 61 (60) 39 (38) 30 (20) 21 (12)
Correlation distance

2 h 0.23 (0.26)
5 h 0.53 (0.53) 0.28 (0.33)
7 h 0.53 (0.54) 0.36 (0.38) 0.07 (0.12)
9 h 0.63 (0.63) 0.45 (0.46) 0.12 (0.15) 0.04 (0.10)

11 h 0.67 (0.68) 0.53 (0.53) 0.18 (0.24) 0.09 (0.15) 0.06 (0.09)

Note: The MDS of the six profiles starts with the distance matrix of the measured distance between
the profiles and finds points in two- (or three-) dimensional space so that the distances between
those points are close to the distances in the matrix. Those points are shown in Figure 8.9. The
actual distances are shown with the distances between the points in two-dimensional space shown
in parentheses. Some of these are very close, for example, the distances from the 0.5 h sample. Where
the distances are quite different (e.g., the distance between the 9 h and 11 h sample), it is implied
that the mapping of the data into two dimensions is not accurate. Some information has been lost
and would require an extra dimension to visualise. One way to think of it is that either the 9 h or 11 h
sample wants to pop out of the page and be somewhere in the air above the book.

EXAMPLE 8.9 MULTIDIMENSIONAL SCALING ON YEAST SPORULATION DATA

We perform MDS on data set 8A; in this way, we can compare the results of MDS with
the results of PCA on the same data. One of the advantages of MDS over PCA is that
we can measure the distances between the samples in different ways. In this example,
we have calculated the distance matrix using both Pearson correlation distance and
Euclidean distance (Table 8.4).

Using these distance measures, we find points in two-dimensional space that have
similar distances between them (Figure 8.11). The MDS plot using Euclidean distance
is almost identical to the PCA plot. The MDS plot using correlation has some differ-
ences: the earlier time points are more spread out, whereas the later time points are
closer together. In both cases, the inherent structure of the time series is preserved,
with the points following a clearly recognisable “path.”

Figure 8.11: Multidimensional scaling of yeast sporulation data. In both figures, we have mapped the
six time points into two-dimensional space so that the distances between the points in two dimensions
are as close as possible to the distances between the profiles using the 1,000 most varying genes.
(a) Euclidean distance is used. The plot is almost identical to the PCA plot and shows the same clear
progression along the time points. (b) Correlation distance is used. The plot is similar, but has some
differences: the distances between the earlier samples are larger, while the three late samples are more
closely clustered. The natural “path” through the two-dimensional space seen with PCA and with the
Euclidean distance MDS is not present for the 7h, 9h and 11h samples.



SECTION 8.3 DIMENSIONALITY REDUCTION 157

−40 −30 −20 −10 0 10 20

−1
5

−1
0

−5
0

5
1 0

1 5

1st Dimension

2n
d 

D
im

en
si

on

0.5h

2h

5h

7h

9h

11h

(a)

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

1st Dimension

2n
d 

D
im

en
si

on

0.5h

2h

5h

7h

9h

11h

(b)



158 ANALYSIS OF RELATIONSHIPS BETWEEN GENES, TISSUES OR TREATMENTS

TABLE 8.5: Comparison of Principal Component Analysis with Multidimensional Scaling

Principal Component Analysis Multidimensional Scaling

� Can visualise high-dimensional data in two
or three dimensions

� Do not impose any a priori structure on the
relationships between genes and samples

� Can be used as inputs for classification
techniques in Chapter 9

� Implemented in wide range of packages,
including GeneSpring, J-Express, R and
Matlab

× Principal components are abstract
concepts and have no concrete meaning

× Can only resolve linear relationships
between genes and samples

× Susceptible to outliers – uses raw, scaled or
centred data

× Difficult to visualise large numbers of genes
or samples

� Can visualise high-dimensional data in two or
three dimensions

� Do not impose any a priori structure on the
relationships between genes and samples

� Can resolve non-linear relationships if used with a
non-linear distance measure

� Allows visualisation of distance matrix to be used
for cluster analysis and can be used to help select
an appropriate distance measure

� Can be used as inputs for classification
techniques in Chapter 9

� Implemented in R and Matlab
× Dimensions have no meaning at all
× Different distance measures give different results
× Difficult to visualise large numbers of genes or

samples
× Not currently implemented in GeneSpring,

J-Express or other commonly used gene
expression analysis packages

MDS is an excellent and very natural way to visualise the distance matrix between
gene profiles or genes. The clustering algorithms described in the remaining sections
of this chapter all work from a distance matrix, so the structure of the cluster analysis
you perform should reflect the MDS plot. This can help you to determine distance
measure to use for a cluster analysis. MDS can also be used as a guide to choosing the
number of clusters for k-means clustering that we describe in Section 8.6.

The MDS plot has an advantage over a cluster plot in that it does not impose
any structure on the data. It has the disadvantage of being difficult to use for large
numbers of genes. We summarise the advantages and disadvantages of PCA and MDS
in Table 8.5.

SECTION 8.4 HIERARCHICAL CLUSTERING

The next two sections discuss the most widely used analysis tool for gene expression
data: hierarchical clustering. This is a methodology that arranges the gene or sam-
ple profiles into a tree so that similar profiles appear close together in the tree and
dissimilar profiles are farther apart.

The technique has become popular for four reasons:

� It can simplify large volumes of data.
� The analysis reveals groups of similar genes that can then be studied in greater

depth.
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� It is possible to visualise the data in a hierarchical way using interactive computer
programs.

� The results are visualised in the style of phylogenetic analyses, which are familiar
to many geneticists.

In this section, we describe how hierarchical clustering works, by first applying it
to a small number of genes and then to a larger number of genes. We then look at a
number of methodological considerations of hierarchical clustering and at the effects
of using different distance measures. Section 8.5 describes a method for determining
the reliability and robustness of clusters in relation to the variability and noise in the
microarray experiment.

EXAMPLE 8.10 THE BASIC METHOD OF HIERARCHICAL CLUSTERING

We demonstrate the method for hierarchical clustering through a simple example. We
will cluster five genes from data set 8B: CREME9, ALOX5, HS2ST1, PELI1 and RDHL.
In Table 8.6, we show the distance matrix for these five genes. This has been computed
by Spearman correlation. The algorithm has four steps:

1. Look at the distance matrix and find the nearest entries (which may be genes
or clusters of genes).

2. Join these entries together in the tree to form a new cluster.
3. Compute the distance between the newly formed cluster and the other genes

and clusters.
4. Return to step 1 and repeat until all genes and clusters are linked.

If we look at Table 8.6a, we can see that the nearest two genes are CREME9 and RDHL.
Therefore, these are the first two genes to be linked (Figure 8.12a), forming a new
cluster that contains these two genes.

We proceed to step 3, in which we must calculate the distances between the re-
maining genes and the cluster containing CREME9 and RDHL (Table 8.6b). There are
a number of different methods for doing this, and the trees formed by these meth-
ods frequently look different. Here, the distances have been calculated using average
linkage: we discuss this and other methods later.

We now return to Step 1 of the algorithm: the nearest entries in the table are the
genes ALOX5 and PELI1. These are joined to form a new cluster (Figure 8.12b), and
we return again to step 1. This process continues until all the genes and clusters are
combined (Table 8.6; Figure 8.12). The result is exactly the type of tree you will see
in programs like TreeView, GeneSpring and J-Express. Traditionally, the height of the
branches is proportional to the distance between the genes or clusters. Therefore,
closer genes (e.g., CREME9 and RDHL) will be joined by shorter branches than more
distant genes (e.g., ALOX5 and PELI1), which will be joined by taller branches.
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TABLE 8.6A: Hierarchical Clustering

Gene CREME9 ALOX5 HS2ST1 PELII RDHL

CREME9 0.00
ALOX5 0.57 0.00
HS2ST1 0.79 0.46 0.00
PELI1 0.39 0.39 0.51 0.00
RDHL 0.03 0.62 0.79 0.43 0.00

Note: The distances between each of five genes from data set 8B are calculated. In the first step of the
process, we identify the smallest distance: between CREME9 and RDHL. This is a triangular matrix;
the distance between two genes is the same whichever way you look at them.

TABLE 8.6B: Hierarchical Clustering

Gene CREME9-RDHL ALOX5 HS2ST1 PELII

CREME9-RDHL 0.00
ALOX5 0.59 0.00
HS2ST1 0.79 0.46 0.00
PELI1 0.41 0.39 0.51 0.00

Note: The genes CREME9 and RDHL have been combined to form a single cluster. We compute
the distance between this cluster and each of the other genes. There are a number of methods for
computing this which are discussed in Section 8.4; here, we use a method called average linkage. The
closest entries in the table are now between ALOX5 and PELI1.

TABLE 8.6C: Hierarchical Clustering

Gene CREME9-RDHL ALOX5-PELI1 HS2ST1

CREME9-RDHL 0.00
ALOX5-PELI1 0.50 0.00
HS2ST1 0.79 0.46 0.00

Note: A new cluster has now been formed containing the genes ALOX5 and PELI1. We now calculate
the distance between this cluster and the remaining genes. The closest entries are now between the
cluster containing ALOX5 and PELI1, and the gene H2ST1.

TABLE 8.6D: Hierarchical Clustering

Gene CREME9-RDHL ALOX5-PELI1-HS2ST1

CREME9-RDHL 0.00
ALOX5-PELI1-HS2ST1 0.60 0.00

Note: In the final step, the two remaining clusters will be joined.

EXAMPLE 8.11 HIERARCHICAL CLUSTERING ON A LARGER GENE SET

We apply hierarchical clustering to 15 genes from data set 8A. These genes have sev-
eral functions: DNA repair, nucleotide excision repair, protein biosynthesis, stress
response, transcription initiation and unknown function. From the time series pro-
files (Figure 8.13), you can see that some genes might cluster together; for example,
CDC21 and DIN7 have very similar shapes, although slightly different scales.



SECTION 8.4 HIERARCHICAL CLUSTERING 161

CREME9 RDHL ALOX5 PELI1 HS2ST1

0.03

CREME9 RDHL ALOX5 PELI1 HS2ST1

0.03

0.39

(a)

(b)

(c)

(d)

CREME9 RDHL ALOX5 PELI1 HS2ST1

0.03

0.39

0.46

CREME9 RDHL ALOX5 PELI1 HS2ST1

0.39

0.46

0.03

0.60

Figure 8.12: Hierarchical clustering. Cluster analysis is applied to five genes from data set 8B; the
distance matrix for these genes is shown in Table 8.6. There are four steps: (a) The closest two genes,
CREME9 and RDHL, are joined to form a cluster; the distance between them is 0.03. The algorithm
continues with step 2, in which we calculate the distance between each of the remaining genes and the
cluster containing CREME9 and RDHL. (b) The next smallest distance is between ALOX5 and PELI1; the
distance is 0.39. These are joined to form a new cluster. (c) The next smallest distance is between the
cluster containing ALOX5 and PELI1, and the gene HS2ST1, a distance of 0.46. These are joined to form
a three-gene cluster containing ALOX5, PELI1 and HS2ST1. The cluster containing ALOX5 and PELI1
forms a subcluster of the three-gene cluster. (d) The two remaining clusters are joined to complete
the tree. We have marked the distances on the tree; traditionally, the heights of the branches are
proportional to the distance between the genes, so very close genes would have very short branches
whereas distant genes would have long branches.
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Figure 8.13: Gene profiles for clustering. We show the time series for the 15 genes from data set
8A that we cluster in the example cluster analyses. These genes have a number of different functions:
DNA repair (DIN7, MSH6, RAD9), DNA replication (CDC21), nucleotide excision repair (DPB2, POL30),
protein biosynthesis (MRP49, MRPL25, PET122), transcription initiation (TFC4, TFC5), stress response
(TSA1, MSN2) and unknown function (MTD1 and PRB1). By looking at the profiles, you can see some of
the “natural”clusters: genes whose transcription is persistently up- or down-regulated, and genes with
transient up- or down-regulation. All the gene expression measurements are ratios relative to expression
at time zero. We have included the point (0,0) in all of the plots, but have not included it in the analyses
because it is not a measured value.

Figure 8.14c is a dendrogram that has been constructed using Pearson correlation
and average linkage. The genes cluster into two broad groups: those that are persis-
tently up-regulated during the time course, and those that show a transient response.
Note that Pearson correlation detects negative correlations, so PET122 is reasonably
close to MSN2 and MTD1 while POL30 is very close to DIN7 and MSH6.
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Linkage Methods

In Step 3 of the algorithm, we join two genes or clusters together to form a new cluster
and need to compute the distances between the new cluster and the remaining genes
or clusters. There are a number of methods that can be used to calculate the new
distances. Each method will produce a different clustering, so it is important to choose
the method you use carefully.
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Figure 8.14: Hierarchical clustering. (a) Clustering with Pearson correlation and single linkage. Single
linkage tends to produce chaining, which we see in this figure. The algorithm has found the large cluster
of persistent genes, but the transient genes are then added one at a time to the large cluster rather than
forming a cluster on their own. Single linkage is usually not a good method for microarray analysis. (b)
Clustering with Pearson correlation and complete linkage. The two main clusters are well defined. The
most obvious difference between this clustering and average linkage is the inclusion of TFC5 with the
transient genes. (c) Clustering with Pearson correlation and average linkage. This is a very commonly
used method for microarray data. There are two broad clusters corresponding to the persistent and
transient responses. PET122 is clustered with the transient genes. TFC5 is clustered with the persistent
genes, but lies outside the main group. Note that TFC5 could have been drawn in between the two main
clusters, which would probably be amore intuitive place to put it. The large cluster has a great deal of fine
structure. (d) Clustering with Spearman correlation and average linkage. Many genes have distance zero
between them so there is no fine structure. The groups are quite different from the Pearson correlation
groups: MSH6 and PRB1 are closer to the transient genes because the gene expression decreases very
slightly. (e) Clustering with Euclidean distance and average linkage. This is very different from the other
clusterings. Most importantly, the two genes that are negatively correlated with other profiles, PET122
and POL30, are outliers and not clustered with other genes. The persistent and transient groups are
identified, and there is greater distance between the genes and less fine structure.

(continued )
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Figure 8.14: (continued)
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Figure 8.14: (continued)
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(a)

Cluster 1

Cluster 2

(b)

Cluster 1

Cluster 2

(c)

Cluster 1

Cluster 2

Figure 8.15: Linkage methods. (a) Single linkage. The distance between two clusters is defined as the
distance between the two nearest points in the clusters. (b) Complete linkage. The distance between
two clusters is defined as the distance between the two farthest points in the clusters. (c) Average
linkage. The distance between two clusters is defined as the average of all of the distances between all
of the points in the clusters.

In this section, we will discuss the three most commonly used methods: single
linkage, complete linkage and average linkage. There are many other methods, and
these have been implemented in statistics packages such as R and SPSS, as well as in
dedicated microarray analysis packages such as GeneSpring and J-Express.

Single linkage defines the distance between two clusters as the distance between
the nearest points in the clusters (Figure 8.15a). Clustering using single linkage (Fig-
ure 8.14a) tends to produce an effect called chaining : single genes are added to clusters
one at a time. This can be seen in the left-hand portion of Figure 8.14a, where the tran-
sient genes are added to the main cluster one at a time. Single linkage can be useful
when the data have natural clusters that are well defined but have irregular shapes,
yet it is generally not recommended for microarray data.

Complete linkage defines the distance between two clusters as the distance be-
tween the farthest points in the clusters (Figure 8.15b). Complete linkage produces
small, compact, well-defined clusters (Figure 8.14b). It performs well when there are
well-defined clusters in the data and performs less well in fuzzier data.

Average linkage defines the distance between two clusters as the average of the
distances between all pairs of points in the two clusters (Figure 8.15c). Average linkage
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is intermediate between single and complete linkage and tends to perform well in
many microarray applications (Figure 8.14c).

The important feature to realise about these and other linkage methods is that
they do produce different cluster diagrams (Figure 8.14). Individual genes may cluster
differently according to the linkage method used; for example, the gene TFC5 clusters
differently in the three dendrograms. Therefore, it is not wise to infer too much from
any given cluster in any one dendrogram because these clusters may only be present
as a result of the chosen methodology.

Distance Measures

We have already seen that the linkage method can produce different clusters. The
distance metric you use can also result in different clusters. We demonstrate this
by showing how the clustering differs when using Pearson correlation, Spearman
correlation and Euclidean distance (Section 8.2).

Figure 8.14 shows dendrograms of the 15 genes of Example 8.11 that have been
clustered using average linkage, but with the three distance measures described. There
are three important features to note:

� Negative correlations. Pearson and Spearman correlation have the ability to
spot negative correlations, that is, genes with opposite profiles. An example
is the gene PET122. This has a profile that is similar in shape to MTD1 and
MSN2, but which is opposite. When PET122 is up-regulated, MTD1 and MSN2
are down-regulated, and vice versa. In the clusterings produced by Pearson and
Spearman correlation, these genes are close. But with Euclidean distance, the
profiles are very distant, so they appear far away on the dendrogram.

� Clusterswithmorethanonegene.Spearman correlation can produce a distance
of zero if the gene profiles have exactly the same shape; the fine structure of the
clusters disappears and is replaced with clusters containing a group of genes.
An example is the cluster containing MRP49, RAD9, TCF4, MRPL25, CDC21 and
DIN7. These all have exactly the same shape, and so have a distance of zero by
Spearman correlation.

� Larger distances.Euclidean distance tends to produce larger distances than the
correlations, so the clusters are generally “looser.”

Which distance measure you use is up to you: there is no right answer. We recommend
that you apply all distance measures to your cluster analysis and look at the results
produced by all methods before drawing conclusions.

Isomorphisms

The final point about hierarchical clustering is the idea of isomorphisms. When we
draw a cluster, each time we have a node, we have a choice: which gene (or cluster)
do we place on which side of the node? Therefore, there are many ways5 of drawing

5 If there are ngenes in the analysis, there are 2n−1 different ways of drawing the cluster diagram.
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(a)

CREME9 RDHL ALOX5 PELI1 HS2ST1

(b)

CREME9 RDHLALOX5PELI1 HS2ST1

Figure 8.16: Isomorphisms. (a) The dendrogram for the five genes we clustered in Example 8.9. (b)
An alternative dendrogram for the same clustering. The clustering is identical, but we have drawn the
dendrograms differently.

the same clustering, and so it is important to remember that just because two genes
or clusters are “near” each other on the dendrogram does not mean that they are near
each other in the clustering. You must always look up the tree to see the lengths of the
branches in order to establish proximity.

EXAMPLE 8.12 ISOMORPHIC CLUSTERS

We show two drawings of the same clustering of the five genes from data set 7A (Fig-
ure 8.16). Although the clustering is the same, the genes are in a different order.

SECTION 8.5 THE RELIABILITY AND ROBUSTNESS OF
HIERARCHICAL CLUSTERING

We have described hierarchical clustering – the most commonly used clustering
method for microarray analysis. There is a question that must always be asked of
any analysis: how reliable are the results? Microarray data are noisy, often with large
coefficients of variation. We need to be sure that the structures we see in the clus-
ter diagrams represent truly related groups of genes and are not a representation of
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random noise or experimental error. Ideally, we want to be able to place a numeri-
cal confidence on a cluster, in a similar manner to placing a standard deviation or
standard error on a straightforward numerical measurement.

There are three methods for assessing the reliability of a cluster analysis.

� Visually.We look at the gene expression profiles in the clusters and see whether
they look similar. This is a useful exercise, but wholly subjective and unreliable,
and it becomes difficult if the number of genes and/or samples is large.

� By biological relevance. If we assume that clusters of genes or samples should
make biological sense, then we would expect biologically relevant genes or bio-
logically similar samples to cluster together. For example, in Figure 8.12a, we
see the DNA repair genes clustering together, and the stress response genes
clustering together.

This is also an important and valuable process, but it too is subjective, and it
is often easy to come up with post hoc justifications as to why particular genes
might cluster together without looking at the data set as a whole and considering
the genes that are not clustered.

� Using an appropriate statistical measure based on known and measured ex-
perimental variability. By performing such an analysis, we relate the reliability
of the clusters to the reliability of the experimental data from which they are
built. From a statistical perspective, this is the best approach.

In this section we describe a statistical measure to quantitatively assess the reliabil-
ity of clusters: the construction of a consensus tree using parametric bootstrapping.
The method of consensus trees is well established in phylogenetic analysis and is an
excellent method for microarray analysis.

Parametric Bootstrapping

We introduced the idea of bootstrapping in Section 7.4. The aim of the bootstrap is to
create imaginary data sets that look very much like the original data set. For assessing
the reliability of cluster analysis, we want to construct data sets that could represent
a completely separate but identical experiment to the one we have performed. Any
biological differences between samples or treatments would be the same. The only
differences are that the bootstrap data sets would have different experimental errors
as a result of being different experiments.

We apply the bootstrap via knowledge of the coefficient of variability of the exper-
iment,6 as measured using the methods of Chapter 6. We start with the real log ratio

6 The procedure we describe is a parametric bootstrap because it constructs the bootstrap data by
adding random deviates from a parametrised distribution. In an experiment with many replicates,
it is also possible to apply a non-parametric bootstrap. Instead of adding random deviates to the
data, we would, for each measurement of each gene in each sample, select one of the replicates
at random and use that value as its measure of expression. Non-parametric bootstraps have the
advantage of allowing different levels of error for different genes and non-normal error distributions.
However, they require a well-replicated experiment to be successful. The parametric bootstrap has
the advantage that it can be applied to any experiment, irrespective of the number of replicates
used.
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TABLE 8.7: Construction of Bootstrap Data for MSH6

Normal Random
Time Real Data Variable Bootstrap Data

30 minutes −0.05 −0.10 −0.15
2 hours −0.01 0.12 0.11
5 hours 1.75 −0.62 1.13
7 hours 3.80 −1.02 2.78
9 hours 3.28 0.43 3.71
11 hours 3.28 0.29 3.57

Note: To construct bootstrap data you start with the real data, compute normal random variables with
standard deviation equal to the measured variability of the experimental data and add these to the
real data. Note that in this example, the real data reach peak expression at 7 hours, but the bootstrap
data reach peak expression at 9 hours. This is because the difference between the values at 7 hours
and 9 hours is smaller than the level of experimental variability, so it cannot be relied upon as being
a true difference in gene expression.

values for each gene. We then construct random numbers from a normal distribution
with mean zero and standard deviation calculated using Equation 6.1, and we add
these random numbers to the real log ratios. The resulting data set is a bootstrap data
set: it looks like the original data set, and the errors we have added to it are exactly of
the magnitude of the errors in the experiment.

EXAMPLE 8.13 BOOTSTRAP DATA FROM DATA SET 8A

We will construct a bootstrap data set for the gene MSH6 from data set 8A. This gene
is initially not differentially expressed, becomes expressed at 5 hours, reaches a peak
at 7 hours, and then appears to decrease in expression (Figure 8.13).

The coefficient of variability for this data set is about 40%. Using Equation 6.1, we
calculate the standard deviation of the normal errors for the logged values to be 0.38.
Because we are using log ratio data, we must multiply this by

√
2 to get a standard

deviation of 0.54. This is essentially a standard deviation for each of the data points
in Figure 8.13.

Now we construct the bootstrap data for this gene. We want the bootstrap data to
look like the original data, with time points at 30 minutes, 2 hours, 5 hours, 7 hours,
9 hours and 11 hours. We construct six normal random variables7 and add these to
the real data (Table 8.7).

We repeat this procedure for every gene that we analyse with cluster analysis. Hav-
ing constructed the bootstrap data for every gene, we perform the cluster analysis on
the bootstrap data. This produces a new dendrogram that might be different from the

7 It is straightforward to construct normal random numbers in all statistics packages, such as SPSS,
R and SAS, and it is also possible to do this in Microsoft Excel using the Data Analysis add-in.
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Figure 8.17: Clustering of a bootstrap data set. Normal random deviates have been added to the
clustering data set and the data have been reclustered using Pearson correlation and average linkage.
The clustering is similar to the clustering in Figure 8.14c: the data still splits into persistent and transient
genes, and many of the genes that were similar continue to cluster together. But there are differences,
particularly in the fine structure of the clusters. TCF5 has also moved from the persistent group into the
transient group.

original dendrogram (Figure 8.17). In this example, the dendrogram is similar to the
clustering of the real data: it identifies the two main clusters of persistent and tran-
sient response genes, and many of the genes that are close in Figure 8.14a are close
in Figure 8.17. But there are also some differences; much of the fine structure of the
clusters has changed, and the gene TFC5 has now clustered with the transient genes
rather than the persistent ones.

Construction of a Consensus Tree

The bootstrap is applied not once, but many times. It is usual to create at least 1,000
bootstrap data sets, and the clustering algorithm is applied to each bootstrap data
set. Next comes the important step. We are interested in clusters of genes that appear
consistently in the bootstrap trees: these are the clusters that appear even when we add
noise to the data that simulates the experimental errors, and so are the clusters that are
robust to experimental error. Any cluster structure that does not appear consistently
in the bootstrap trees is not robust to experimental errors, and it is difficult to draw
scientific inference from such clusters.
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Mathematicians have shown that the clusters that appear in more than 50% of the
bootstrap trees form a consistent pattern, and it is possible to construct a tree from
them, called a consensus tree. Not all genes may be resolved in a consensus tree: there
may be groups of genes that cluster together but have no further structure. That is
not a problem; it simply means that there is not enough experimental evidence to
subdivide those genes into smaller clusters.

We also know the number of times each node on the consensus tree has been
seen among the bootstrap trees. This can be used as a measure of confidence in
each node. Therefore, we have achieved our objective – we have identified the cluster
structure that is robust to experimental error and, on each node that remains, we have
a quantification of the confidence in each node of the tree.8

EXAMPLE 8.14 CONSENSUS TREE FOR DATA SET 8A

We run the bootstrap 1,000 times for the 15 genes we selected from data set 8A, first
with the measured experimental variability of 40%, and then with 30% variability to
demonstrate the dependence of consensus trees on data quality.

When we use 40% variability, only two clusters appear in more than 50% of the
trees: the cluster containing the 11 persistent genes appeared 590 times, and the
cluster containing the 2 transient genes MSN2 and MTD1 appeared 535 times (Fig-
ure 8.18a). No other structure was observed. The genes TSA1 and PET122 were not
clustered with any other genes. This implies that the fine structure seen in Figure 8.12a
cannot be relied upon as biologically meaningful: it is all within the bounds of exper-
imental error. Interestingly, the gene TFC5 has been clustered with the persistent
genes; the decrease in gene expression after 7 hours is within the 40% experimental
error and so is not significant.

When we use 30% variability, which is less than the variability in this particular
experiment, but could be representative of a better quality experiment, a little more
structure is seen. There is a separation between TFC5 and the other persistent genes,
while PET122 and TSA1 cluster with MSN2 and MTD1 (Figure 8.18b). No other fine
structure is observed.

8 Consensus tree construction has been part of phylogenetic software such as Phylip for many years.
At the time of this writing, these methods have not yet been included in any of the commonly used
microarray analysis software packages.

Figure 8.18: Consensus tree construction. We construct consensus trees for the clustering shown in
Figure 8.14c using 1,000 bootstrap replicates. (a)We use the experimental variability of 40%. Only two
clusters are present in the consensus tree. The cluster containing the 11 persistent genes is observed in
590 of the 1,000 bootstrap trees, and the cluster containing MTD1 and MSN2 appears 535 times. The
genes PET122 and TSA1 are not clustered. No other cluster structure is observed. Interestingly, the gene
TFC5 clusters with the persistent genes: this is because the decrease in gene expression after 7 hours
is within the bounds of experimental error. It is difficult to infer any further cluster structure from this
data, such as the structure seen in Figure 8.14c, because this structure is too sensitive to experimental
error. (b) The consensus tree is constructed with experimental variability of 30%. The clusters from
(a) are present with greater certainty; there is also more structure present, with PET122 and TSA1
clustering with MSN2 and MTD1, and TFC5 being slightly different from the other 10 persistent genes.
We conclude that we can get more cluster information from a better experiment.
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In summary, we learn two lessons from consensus trees:

� Much of the fine structure seen in cluster analyses may not represent when
we take into account experimental variability. The consensus tree shows the
structure that is reliable.

� The better you run your experiment, in terms of reducing experimental errors
and variabilities, the more information you can get from your cluster analysis.

SECTION 8.6 MACHINE-LEARNING METHODS FOR
CLUSTER ANALYSIS

There are two methods that have come from the machine-learning community that
are implemented in many of the gene expression analysis software packages: k-
means clustering and self-organised maps. This section gives a brief description of
these methods and shows them applied to the data set we have used for hierarchical
clustering.

K-Means Clustering

K-means is a clustering algorithm that differs from hierarchical clustering in three
important ways:

� The number of clusters has to be specified in advance.
� There is no hierarchy or relationship between the clusters, nor is there any

hierarchy or relationship between the genes or samples within the clusters; the
clusters are just groups of similar gene expression profiles.

� K-means starts by randomly allocating genes or samples into clusters. Therefore,
different runs of k-means can give slightly different results.

The K-Means Algorithm

The k-means algorithm has six steps:

1. Choose the number of clusters, denoted k.
2. Randomly assign each gene expression profile to one of the k clusters.
3. Calculate the centroids of each of the k clusters.
4. For each profile in turn, calculate the distance between it and the centroids of

each of the k clusters.
5. If that profile is closest to a cluster different from the one in which it currently

belongs, move the profile to the new cluster and update the centroids of both
clusters.

6. Go back to step 4 and repeat until no profiles change cluster membership.

EXAMPLE 8.15 K-MEANS CLUSTERING OF DATA SET 8A

We apply k-means clustering to the 15 genes to which we have applied the hierarchical
clustering using correlation as the distance measure. The results for 2, 3, 4 and 5
clusters are shown in Table 8.8. This clustering also finds the groups of persistent and
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TABLE 8.8: K-Means Clustering of Genes from Data Set 8A

Number of Clusters (k)

k =2 k =3 k =4 k =5

Cluster 1 Cluster 1 Cluster 1 Cluster 1
MTD1 MTD1 MTD1 MTD1
MSN2 MSN2 MSN2 MSN2
TSA1 TSA1 TSA1 TSA1
POL30 Cluster 2 TFC5 TFC5

Cluster 2 POL30 Cluster 2 Cluster 2
PET122 Cluster 3 PET122 PET122
TFC5 PET122 Cluster 3 Cluster 3
DIN7 TFC5 POL30 POL30
RAD9 DIN7 Cluster 4 Cluster 4
PRB1 RAD9 DIN7 DIN7
CDC21 PRB1 RAD9 RAD9
MSH6 CDC21 PRB1 PRB1
MRP49 MSH6 CDC21 Cluster 5
MRPL25 MRP49 MSH6 CDC21
TFC4 MRPL25 MRP49 MSH6
DPB2 TFC4 MRPL25 MRP49

DPB2 TFC4 MRPL25
DPB2 TFC4

DPB2

Note: We apply k-means clustering to the 15 genes studied, varying the number of clusters k from 2 to
5. The clustering algorithm finds the persistent and transient groups. When k = 2, POL30 is clustered
with the transient genes, probably because there are too few clusters. Whenk = 4, the cluster structure
seems to fit the data well. Whenk = 5, the persistent genes split into two groups: the data has probably
been overclustered.

transient response genes. When k = 2, the gene POL30 is grouped with the transient
genes. This is probably an anomalous result because there are too few clusters. The
value for k = 4 looks like a good result. When k = 5, the persistent genes split into two
groups and the data are probably overclustered.

How to choose a good value of k ?
The number of clusters has to be chosen in advance. This means that the user must
make some attempt to estimate the number of clusters before running the algorithm.
There are two approaches to estimating the number of clusters to use: via MDS and
empirically. We recommend both.

MDS (Section 8.3) allows you to visualise the distances between the genes or sam-
ples in a two-dimensional space. By using the distance measure you intend to use
for the clustering you can gain an indication of whether there is a natural number of
clusters in the data.

EXAMPLE 8.16 MDS TO HELP CHOOSE k

We apply MDS to the 15 genes (Figure 8.19). There is a main cluster of genes on the
left-hand edge of the space; this might be two clusters with MSH6, MRPL25 and TCF4
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Figure 8.19: Multidimensional scaling of clustering data.We apply MDS to the 15 genes we are using
for clustering, using Pearson correlation as a measure of distance. There is a large cluster of genes at
the left-hand edge of the figure, which has a subcluster of MSH6, MRPL25 and TFC4. The genes MSN2
and MTD1 are close together, and TFC5 is in between these and the main cluster. DIN7, PET122 and
TSA1 appear to be outliers. We would estimate from this figure that there might be between four and
six natural clusters in the data.

slightly away from the main group. MTD1 and MSN2 are close together and might
form another cluster; TFC5 appears to be between these and the big cluster. DIN7,
PET122 and TSA1 are away from the other genes. So, we would certainly need at least
three clusters, and probably at most six clusters.

Empirical choice ofkmeans running the k-means algorithm with different numbers
of clusters and different distance metrics, and testing the reliability of the clusters us-
ing one (or all) of the following methods described. We would then select a number
of clusters that gives robust, reliable and meaningful results.

Validating K-Means Clustering

As with hierarchical clustering, it is essential to validate the results of k-means clus-
tering. There are four ways to validate your results; these are similar to the methods
described in Section 7.4.

� Visually.Look to see if genes or samples in the same cluster have similar profiles.
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� By biological validity. Look to see if the genes in the same clusters have similar
or complementary biological functions, or if the samples in the same clusters
are derived from similar biological sources.

� By reclustering the data with the same value of k. There is a random element
in k-means clustering. If the same clusters are coming up, then the clustering
is performing well. If each clustering gives different clusters, then you may be
using a bad value fork, a bad distance measure or this may not be a good method
to analyse the data.

� By statistical analysis. Parametric bootstrapping (Section 8.5) can also be ap-
plied to k-means clustering. One should only believe clusters that appear in the
majority of bootstrap clusterings, and the bootstrap will allow you to place a
measure of confidence on those clusters.

Self-Organised Maps

The final clustering algorithm we look at in this chapter is self-organised maps. These
are clustering methods that are similar to k-means in that the user specifies a prede-
fined number of clusters. However, unlike k-means, the clusters relate to one another
via a spatial topology. Usually, the clusters are arranged on a square grid. The algo-
rithm is quite detailed and we refer the interested reader to the reference at the end
of the chapter. There are three important properties of self-organised maps:

� The clusters relate to each other in a spatial topology, usually in a grid.
� The size of the grid (number of clusters) must be chosen in advance: it is usually

wise to try different sizes and see what works best.
� The genes are at first allocated to the clusters at random, so different runs of a

self-organised map may give different results.

EXAMPLE 8.17 SELF-ORGANISED MAPS ON DATA SET 8A

We run a self-organised map with a 2 × 2 grid on the same 15 genes that we have
been using for all of the clustering methods. We show the average profiles of the four
clusters in Figure 8.20. The four clusters have a spatial relationship: the two clusters
on the top represent the persistent responses, while the two clusters on the bottom
are the transient responses. In this case, the two top clusters are very similar, probably
because even a 2 × 2 grid contains too many clusters for this data set.

In Table 8.9 we show the allocations of genes from two separate runs of a self-
organised map. The allocation of the genes to clusters is different. This is a serious
problem when using self-organised maps for analysing microarray data and must be
considered whenever using them.

Choosing the Size of a Self-Organised Map

Exactly the same principles should be applied to choosing the size of a self-organised
map as applied for choosing the number of clusters k. You can use MDS to look to
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Figure 8.20: Gene profiles for the four nodes of the self-organised map. Each of the four nodes of
the self-organised map has average profiles shown in the four panes of the figure. The top two nodes
are fairly similar; both contain persistently regulated genes. The bottom two nodes contain transiently
regulated genes.

see if there is a natural number of clusters, and you can choose the size of the map
empirically.

EXAMPLE 8.18 CHOOSING THE SIZE OF A SELF-ORGANISED MAP

Looking again at the MDS plot (Figure 8.19), we can see that four clusters would be
a reasonable number to use, but the nine clusters given by a 3 × 3 grid would be too
many clusters for these data. Hence, in Example 8.17 we used a 2 × 2 grid to give four
clusters.
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TABLE 8.9A: Self-Organised Maps Applied to Data Set 8A

CDC21 DIN7
MSH6 RAD9
MRP49 PRB1
MRPL25 DPB2
TFC4
TFC5

MTD1 POL30
MSN2 PET122
TSA1

Note:Allocations of genes to clusters from the run of a 2 × 2 self-organised map that was used to create
Figure 8.16.

TABLE 8.9B: Self-Organised Maps Applied to Data Set 8A

CDC21 PET122
MSH6
MRP49
MRPL25
TFC4
TFC5
DIN7
RAD9
PRB1
DPB2

MTD1 POL30
MSN2 TSA1

Note: Allocations of genes to clusters from a separate run of a 2 × 2 self-organised map. Note that the
allocations are different in the two runs. There is a random element to self-organised maps, which
means that two runs can be very different.

Validation of Self-Organised Maps

As with k-means clustering, self-organised maps can be validated four ways:

� Visually. Looking to see that the profiles are similar in the clusters and are dif-
ferent between clusters.

� By biological relevance. Check that genes with similar biological function
or samples from similar biological sources are present in the same or nearby
clusters.

� By reclustering. Does the self-organised map change dramatically when it is
re-run? If so, the clusters that change may be difficult to interpret.

� By statistical analysis. Although it is possible to apply the bootstrap methods
described in Section 8.5 to self-organised maps, the consensus clusters may
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TABLE 8.10: Advantages and Disadvantages of Different Clustering Methods

Hierarchical
Hierarchical Consensus Tree K-Means Self-Organised Maps

� Easy to understand
algorithm

� Intuitive
interpretation of
results

� Same data give the
same results every
time

� Implemented in
many gene
expression packages

× No a priori reason
why genes should
relate on a binary tree

× Noise and errors can
adversely influence a
tree

× No measure of
confidence in results

� Intuitive
interpretation of
results

� Robust to noise and
errors

� Hierarchy is
representative of
statistically
significant
differences in gene
expression profiles

� Provides a measure of
confidence in clusters

× Not yet implemented
in gene expression
analysis software

× Can give slightly
different answers on
different runs

� Intuitive
interpretation of
results

� No preimposed
hierarchy

� Implemented in
many gene
expression packages

× User has to specify
number of clusters in
advance

× Can give different
results when run
different times

× No measure of
confidence in results
although can
construct consensus
clusters

� Implemented in
many gene
expression packages

× User has to specify
number of clusters in
advance

× No a priori reason
why gene expression
clusters should fit a
two-dimensional
topology

× Can get very different
results when run
different times

× Cannot easily
construct consensus
clusters without
losing topology

not relate to each other according to any spatial topology, and so the original
topology of the self-organised maps may be lost.

KEY POINTS SUMMARY

In Table 8.10, we summarise the key advantages and disadvantages of the different
clustering methods. The key points to take from this chapter are as follows:

� There are a number of ways to measure the similarity between gene expression
profiles and the measure you use will affect your results. Thus, it is recommended
to run your analyses with a number of different distance measures.

� PCA and MDS provide a good way to visualise your data without imposing any
hierarchy on them.

� Hierarchical clustering can be used to identify related genes or samples and portray
them using a dendrogram.

� There are many variants of hierarchical clustering, each of which can produce
different results. You should always try different linkage methods and distance
metrics.

� Machine-learning methods can also be used to define relationships between genes
or samples but can produce different results each time you run them.

� You should always perform a statistical validation of your results (e.g., using a
bootstrap algorithm).
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The Stanford Microarray Database. All the data sets we refer to in this chapter are available

for download from this database. There are also links to the papers from which the data

derive.

http://www.r-project.org/

R package is freely available statistical software that can run on Windows, MacIntosh and

Unix computers. There is a great deal of microarray analysis software written for R.

http://www.molmine.com

Homepage of Molmine, the distributors of J-Express. This is a gene expression analysis

package that is available to academics for free and which contains many of the algorithms

described in this chapter.

http://www.sigenetics.com

Homepage of Silicon Genetics, the company that produces GeneSpring. This is the most

commonly used commercially available microarray analysis software. It implements many

of the methods described in this chapter.



CHAPTER NINE

Classification of Tissues and Samples

SECTION 9.1 INTRODUCTION

One of the most exciting areas of microarray research is the use of microarrays to
find groups of genes that can be used diagnostically to determine the disease that
an individual is suffering from, or prognostically to predict the success of a course of
therapy or results of an experiment.

In these studies, samples are taken from several groups of individuals with known
pathologies, outcomes or phenotypes and hybridised to microarrays. The aim is to
find a small number of genes that can predict to which group each individual belongs.
These genes can then be used in the future as part of a molecular test on further indi-
viduals, either using a focussed microarray, or a simpler method such as quantitative
polymerase chain reaction (PCR).

EXAMPLE 9.1 DATA SET 9A

Bone marrow samples are taken from 27 patients suffering from acute lymphoblastic
leukemia (ALL) and 11 patients suffering from acute myeloid leukaemia (AML) and
hybridised to Affymetrix arrays.1 We want to be able to diagnose the leukemia in future
patients using either Affymetrix technology or using more focussed arrays with a small
number of genes. How do we choose a set of rules to classify these samples?

The development of such predictive models depends on statistical and compu-
tational techniques, many of which are still the subject of active research. There are
essentially three parts to developing a predictive model, and so the chapter is arranged
into three further sections:

Section 9.2: Methods of Classification, looks at a number of commonly used meth-
ods for distinguishing between groups of individuals based on a given set of
measurements. There are several well-established methods for doing this, many
of which have been shown to work well with microarray data.

Section 9.3: Validation, looks at methods to verify the results of a classification
analysis. It discusses the two most commonly used approaches: training and test
sets, and cross-validation.

1 The data are from the paper of Golub et al. (1999). The reference is given at the end of the chapter.
The data are available from the Stanford Microarray Database.
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Section 9.4: Dimensionality Reduction, looks at a number of methods that can be
used to find appropriate small numbers of genes from the large numbers of genes
on a microarray that can be used to distinguish between the groups of individuals
in a robust and reliable manner. This is a topic of open research; we describe some
of the methods that are used, but there are no well-established standards.

SECTION 9.2 METHODS OF CLASSIFICATION

In this section we describe methods that allow you to predict the class to which an
individual belongs, based on gene expression measurements. To do this, we build
predictive models using the gene expression measurements of a number of individuals
with known class membership. In the machine-learning community, this is known
as supervised learning. Throughout this section, we assume that we have already
selected a small number of genes whose expression measurements we use, and are
not using all the genes on the microarray. In Section 9.4, we discuss methods we would
use to select genes that allow us to build good predictive models.

We start by describing two concepts that are central to classification: separability
and linearity. We then describe five different classification methods: k-nearest
neighbours, nearest centroid, linear discriminant analysis, neural networks and
support vectormachines. These are all methods that have been applied to microarray
data analysis.

Separability

Suppose we have gene expression measurements for a number of samples. In clas-
sification analyses, it is helpful to think of each sample as occupying a location in a
high-dimensional space. Each axis of the space is the measurement of expression of
one of the genes. If we are using the measurements of two genes, then the samples
can be thought of as having locations in two-dimensional space; if we are using mea-
surements of three genes, then we would think of the samples as having locations
in three-dimensional space; and if we are using the measurements of ten genes, we
would think of the samples as having locations in ten-dimensional space.

EXAMPLE 9.2 CONCEPTUALISING SAMPLE MEASUREMENTS
IN GENE EXPRESSION SPACE

In data set 8A, there are 27 ALL patients and 11 AML patients. If we consider only
the genes ubiquinol cytochrome c reductase core protein II and defender against cell
death I then we can think of each sample as having a position in a two-dimensional
space, with each axis being the level of gene expression of each of the two genes
(Figure 9.1a).

Within this conceptual framework, there are two extreme scenarios:

� Separable: The different groups to which the samples belong occupy different
regions of the gene expression space.
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� Non-separable: The different groups to which the samples belong are mixed
together in the same region of gene expression space.

In many cases, the data may only be partially separable, with the different groups
broadly occupying different regions of space but with some overlap at the bound-
aries. The aim of the classification methods described in this section is to find a
way to partition the space so that each group is in a different region and to de-
scribe the partitions, so that given a new sample, we can determine to which group
it belongs. As part of this process, we can quantify the extent to which the data is
separable.
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Figure 9.1: Separability of classes. Twenty-seven samples from patients suffering from ALL and 11
samples from patients suffering from AML have been hybridised to microarrays (data set 9A). We would
like to find groups of genes that can distinguish between the two groups. For illustrative purposes, we
show examples with just two genes. In general, it would be common to use more than two genes for
classification analyses. (a) The genes ubiquinol cytochrome c reductase core protein II and defender
against cell death 1 cannot distinguish between the two groups. We call data that behaves in this way
inseparable. (b) The genes C-myb gene and leptin receptor divide the data clearly into two groups. In
this case, it would be possible to draw a straight line between the ALL and AML classes to separate the
groups; we call the data linearly separable. Methods such as linear discriminant analysis would work
well with such data. (c) The genes immunoglobulin alpha heavy chain and DNA G/T mismatch binding
protein also separate the two classes. But in this case, there is no straight line that could be used to
divide the two groups. We would need either two straight lines or a curved line to distinguish the classes.
We call this data non-linearly separable.

(continued )
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In a microarray experiment, the level of separability of the data will be determined
by the group of genes whose expression measurements are being considered. Part of
the remit of the dimensionality reduction methods described in Section 9.4 is to find
groups of genes that maximise the separability of the data.

EXAMPLE 9.3 SEPARABLE AND NON-SEPARABLE DATA

If we consider the measurement of the sample in data set 9A in two-dimensional space
with the genes ubiquinol cytochrome c reductase core protein II and defender against
cell death I, then the two groups of patients (ALL and AML) do not occupy different
regions of space (Figure 9.1a). The data are not separable.

If we consider the same patients but using the measurements of C-myb gene and
leptin receptor, then the two groups are in distinct regions of space (Figure 9.1b). The
data are separable, and it is possible to build a classifier using these genes.

Linearity

When we consider separable data, there are two possibilities for how the samples can
be separated in space:

� Linearly separable. Data are linearly separable if it is possible to partition the
space between the two (or more) groups using straight lines.

� Non-linearly separable. Data are non-linearly separable if the groups are sep-
arable, but it is not possible to partition the groups using straight lines.

We will describe some methods that only apply linear separation techniques, and
other methods that are able to classify non-linearly separable data. Microarray data
are frequently non-linear, so it is often recommended to try both linear and non-linear
methodologies.

EXAMPLE 9.4 LINEARLY AND NON-LINEARLY SEPARABLE DATA

Data set 9A can be both linearly and non-linearly separable, depending on which
gene expression measurements are considered. With the genes C-myb gene and leptin
receptor, the data are linearly separable (Figure 9.1b). The genes immunoglublin alpha
heavy chain and DNA G/T mismatch binding protein also separate the groups, but
the separation is non-linear (Figure 9.1c).

Number of Classes

Throughout this chapter we use data set 9A, which consists of two classes, AML and
ALL. The reason for this is that it is easiest to understand classification methods from
the perspective of distinguishing between two groups. However, many applications of
classification using microarrays may have more than two groups of individuals. Three
of the five methods we will describe extend very naturally to such data.
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EXAMPLE 9.5 MICROARRAY DATA WITH FOUR CLASSES: DATA SET 9B

There are four types of small round blue cell tumours of childhood: neuroblastoma
(NB), non-Hodgkin lymphoma (NHL), rhabdomyosarcoma (RMS) and Ewing tumours
(EWS). Sixty-three samples from these tumours have been hybridised to microarrays.2

We wish to be able to diagnose these tumours in children using a focussed microarray
and a set of rules to distinguish the tumour types.

Classification Methods

We now describe five different methods for partitioning space and predicting the
group of a new sample:

� K-nearest neighbours
� Centroid classification
� Linear discriminant analysis
� Neural networks
� Support vector machines

These are all well-established and commonly used methods; they are implemented in
most specialist data analysis software packages, such as R or Matlab. The advantages
and disadvantages of these methods are summarised in Table 9.1.

K-Nearest Neighbours

K-nearest neighbours (KNN) is the simplest method for deciding the class to which a
sample belongs (Figure 9.2). We have a number of samples with known class mem-
bership. We want to classify a new sample with unknown class membership. There
are three steps:

1. We look at the gene expression measurements for the sample we are trying to
classify.

2. We find the nearest of the known samples as measured by an appropriate dis-
tance measure (typically Euclidean distance; see Section 8.2).

3. The class of the sample is the class of the nearest samples.

There are two parameters in using a KNN algorithm. The first parameter is k : this is
the number of nearest samples to look at; typically, we use k = 3, so that we look at the
nearest 3 samples, but some people use k = 5 or k = 1. The second parameter, l, is the
smallest margin of victory for a definite decision to be made; otherwise, the individual
will be unclassified. So if k = 3 and l = 3, then all three nearest neighbours must be in
the same class for a classification to be made: if one of the three nearest neighbours
is in a different class, no classification will be made. If k = 3 and l = 1, then a simple
majority vote will always result in a classification.

2 The data are from the paper of Khan et al. (2001). The reference and URL for the data are given at
the end of the chapter.
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KNN has the advantages of making intuitive sense and being easy to understand;
it extends easily to more than two samples and can separate classes that occupy non-
linear regions of space (Figure 9.1c). However, it is not robust to outliers: a small
number of outliers can result in a false or non-classification (Figure 9.2b).

Centroid Classification

This is also a very simple method for classification. There are three steps to classifying
a sample with unknown class membership:

1. For each class, we calculate the centre of mass of the points of the representative
samples (Figure 9.3a).

2. Calculate the distance between the position of the sample to be classified and
each of the centres of mass of the classes using an appropriate distance measure.

3. Assign the sample to the class whose centre of mass is nearest to it.

Centroid classification is also simple to understand and implement, and extends
very naturally to more than two samples. It is fast and uses all the data. However, it
can give completely incorrect results if the data is not linearly separable (Figure 9.3b).

Linear Discriminant Analysis

This is a very different type of analysis from the previous analyses. Unlike KNN or cen-
troid classification, linear discriminant analysis (LDA) is what is known as a parametric
method: we construct a statistical model from the data and base the classification on
that model. There are two steps to classifying a sample:

1. Calculate a straight line (in two dimensions) or hyperplane (in more than two
dimensions) that separates two known classes so as to minimise the within-class
variance on either side of the line and maximise the between-class variance
(Figure 9.4).

2. The class of the unknown sample is determined by the side of the hyperplane
on which the sample lies.

LDA has strong statistical theory behind it. Because it takes into account the vari-
ability of the data, it tends to perform better than centroid classification. However,
it does not extend naturally to more than two classes and only works if the data are
linearly separable.

Figure 9.2: K-nearest neighbours algorithm. (a) The KNN algorithm applied to data set 9A, with k = 3
and l = 3. The three nearest neighbours of the highlighted ALL sample are all ALL samples; therefore, this
sample would be classified as ALL. However, the highlighted AML sample has two nearest neighbours
that are also AML samples, but one neighbour that is an ALL sample. With l = 3, this sample would
not be classified, because it would be uncertain to which class it belongs. With l = 1, a single dissenter
would be allowed, and so this sample would be classified as AML. (b) The potential problem with the
KNN algorithm is that, in this case, the data are not very well separated. There are three AML samples
very close together in an area where it is difficult to discriminate between the two groups. If we were
classifying a new sample, and it was close to the cluster of AML samples, it would be classed as AML,
when we might prefer if it were unclassified.
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Neural Networks

Neural networks are a method of separating space into classes in a way that can include
non-linear separation. Neural networks are based on a model of the working of the
brain: the network is organised as a series of nodes (simulating neurons), which have
inputs and outputs (Figure 9.5a). The output of the nodes depends on the input into
the nodes; the different inputs all have relative importance, which are determined by
a set of parameters known as weights.

The neural network has the ability to learn by adjusting the weights. It is trained
by giving it examples of samples to be classified; the network adjusts the weights
on the input of the nodes so that it produces the correct output. The network is
trained until it shows no further improvements in predicting the classes of the training
set.

There are two steps for using a neural network to predict the class of an individual:

1. Train the neural network using the samples with known classes.
2. Apply the neural network to the new individual to determine its class.

Neural networks have the key advantage of being able to discriminate non-linearly
separable data (Figure 9.5b) and extend naturally to the analysis of more than two
classes. For these reasons, neural networks have become widely used tools in many
fields. However, neural networks require training and optimisation, which makes them
slower techniques to use. There is also no generic architecture for neural networks:
the number of hidden nodes (Figure 9.5a) has to be identified empirically.

Support Vector Machines

Support vector machines (SVMs) are the most modern method applied to classifica-
tion. SVMs are similar to LDA: they work by separating space into two regions by a
straight line or hyperplane in higher dimensions. The hyperplane is chosen so as to
minimise the misclassification error of the SVM.

The power of SVMs is that the data are first projected into a higher dimensional
space and then separated using a linear method. This allows non-linear separation
of the data. There are a number of different ways to project the data into a higher
dimension (the method chosen is known as a kernel function). We do not go into the
details of the mathematics here, but refer the reader to the reference at the end of the

Figure 9.3: Nearest centroid algorithm. (a) Calculate the centroids of the two groups; these are shown
by a cross for the ALL samples and a plus for the AML samples. New samples are classified by whichever
centroid is the nearest. Two classes are separated by a perpendicular bisector of the line joining the
two centroids. In this case, all but one of the training samples are classified correctly by this method.
(b) Centroid algorithms can go wrong with non-linearly separable data. Here, the genes uridine diphos-
phoglugose pyrophosphorylase and CD19 separate the data into two regions, but the ALL samples
“wrap around”the AML samples. Because of this, many of the ALL training samples are closest to the
AML centroid, and would be misclassified. Nearest centroid algorithms have problems with non-linearly
separable data and should be avoided unless it is clear that the separation of the classes is linear.
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chapter. There are three steps in applying a support vector machine:

1. Project the data from the known classes into a suitable high-dimensional space.
2. Identify a hyperplane that separates the two classes.
3. The class of the new individual is determined by the side of the hyperplane on

which the sample lines.

SVMs can discriminate non-linear regions of space and are faster to train than neural
networks. However, they do not naturally extend to more than two classes, and there
is no natural kernel function to use: the user must optimise this empirically.

SECTION 9.3 VALIDATION

There is a core problem in the classification methods we have just described: given a
classification algorithm that has been trained on two or more groups of individuals
with known classes, how do we know that this method is going to be generally appli-
cable to new individuals? It is possible that the individuals we have used to train the
algorithm are in some way not representative of the groups to which they belong and,
because of this, the algorithm may fail to classify subsequent individuals correctly.

There are two methods that are commonly used to resolve this problem: the use of
training and test sets and cross-validation. If you are going to perform a classifica-
tion analysis, we recommend that you use one or both of these validation methods.
Training and test sets are more effective, but less powerful with small data sets. Cross-
validation can be used with smaller data sets and is typically used as part of the training
stage to help optimise the parameters of the algorithm.

Training and Test Sets

This is the most widely used and accepted method for validating the results of a
classification algorithm. Approximately two-thirds of the data are used to train the
algorithm: the algorithm is optimised to classify this training data as best as possible.
After training, the algorithm is tested on the remaining third of the data to provide
independent verification and quantification of the success of the algorithm.

EXAMPLE 9.6 TRAINING AND TEST DATA SETS FROM DATA SET 9A

In data set 9A, the authors had 62 patients available in their study, 41 suffering from
ALL and 21 suffering from AML. The authors chose to use a training set of 38 patients,

Figure 9.4: Linear discriminant analysis (LDA). (a) LDA finds the straight line between the two groups
that best separates them. When the groups are linearly separable, LDA does better than the nearest
centroid algorithm, because it takes the variability within and between the groups into consideration
(c.f. Figure 9.3a). (b) LDA goes wrong with non-linearly separable data. Here, the genes separate the
data, but no straight line can be drawn that separates the classes. If we were to use LDA on the original
data, many of the samples in both classes would be misclassified. LDA should be avoided unless it is
clear that the separation of the classes is linear.
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this being just over 60% of the data set – 27 ALL patients and 11 AML patients. The
remaining 24 patients (14 ALL and 10 AML) were used by the authors as a test set to
test the algorithms they developed. The success of any algorithm can be described by
the number of correct classifications in the test set.

Cross-Validation

The alternative to using training and test sets is to use cross-validation to measure the
success of an algorithm. Cross-validation has a fold associated with it that determines
how the algorithm is implemented. k-fold cross-validation divides the data randomly
into k equal (or almost equal) parts. The algorithm is then run k times, using k− 1
of the parts as a training set and the other part as a test set. Each time the algorithm
is run, a different test set is used, so that over the k runs of the algorithm, all data
points are used as a test set. The success of the algorithm is the sum of the correct
classifications over each of the runs.

EXAMPLE 9.7 CROSS-VALIDATION OF A CLASSIFICATION ALGORITHM

Data set 9A has 62 patients, 41 suffering from ALL and 21 from AML. A 3-fold classifi-
cation would divide the data into three groups:

� Group A: 14 ALL patients and 7 AML patients
� Group B: 14 different ALL patients and 7 different AML patients
� Group C: the remaining 13 ALL patients and the remaining 7 AML patients

The cross-validation is run in three steps:

1. Groups A and B are used for training and group C is used for testing.
2. Groups A and C are used for training and group B is used for testing.
3. Groups B and C are used for training and group A is used for testing.

Figure 9.5: Neural networks. (a) A neural network comprises a series of ordered nodes that are mod-
elled on neurons in the brain. Each of the inputs would be genes (or principal components) and would
connect to the nodes in the hidden layer. Each node in the hidden layer thus receives inputs from all
of the inputs; each input into each node is weighted, and the node responds to the inputs according
to their weighted sum. The hidden layer nodes will either “fire” or “not fire,” depending on whether
the sum crosses a set threshold. The hidden-layer nodes send output to the output layer. These nodes
behave in exactly the same way as the hidden-layer nodes and will fire according to the weighted sum
of their inputs from the hidden layer. The number of classes the neural network can discriminate de-
pends on the number of output nodes: in this case, the neural network has two output nodes and so
can discriminate four classes. The number of nodes in the hidden layer determines the extent to which
the neural network can separate non-linear classes. With no hidden nodes, the neural network can only
separate linearly separable classes. The neural network is trained by showing it examples where the
desired output is known in advance. The weights on all of the connections – both from the inputs to the
hidden layer and from the hidden layer to the outputs – are adjusted so that the neural network provides
correct output for each of the known examples. The trained network is then used to classify samples
with unknown group membership. (b) Separation of the AML and ALL patients from data set 9A using a
neural network. The neural network has been able to distinguish the two groups which are non-linearly
separable. The line is the approximate boundary of the classification regions of the neural network. For
this example, we used six hidden nodes and needed only one output node (there are only two classes).
The number of hidden nodes needs to be determined empirically; this is a major disadvantage of neural
networks.
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Leave-One-Out Cross-Validation

A particularly important special case of cross-validation is called n-fold cross-
validation or, frequently, leave-one-out cross-validation. In this method, all but one
of the samples are used to create a classifier, and the algorithm is tested on the left-
out sample. This is repeated, leaving out each of the samples in turn, and the num-
ber (or proportion) of samples correctly classified is reported as the success of the
algorithm.

Cross-validation is particularly useful during the training stage of a classification
algorithm, in which parameters may need to be tuned so that the algorithm fits the
training set. However, there is a disadvantage to cross-validation, which is that the
results generated are not independent and so are not as reliable as using pure training
and test sets.

SECTION 9.4 DIMENSIONALITY REDUCTION

The microarray experiment generates very high dimensional data; for example, data
set 9A has 6,817 genes. Modern microarrays can contain up to 30,000 genes, and each
sample has a measurement for each gene. The examples we have seen in Section 9.2
have looked at just two genes at a time – a two-dimensional measurement space – but
the microarray experiments from which these examples derive have measurements
in a much higher dimensional space – several thousand dimensions in each of the
two data sets we have described.

One of the tasks involved in building a good classifier is to reduce the dimensionality
of the data: instead of looking at all 6,000 gene expression measurements of a sample,
we look at a small number of measurements. In the examples we showed earlier, we
showed just 2 genes; in reality, we may want to use more genes, perhaps 5 to 20 genes.
There are a number of reasons to seek to reduce the dimensionality of the system:

� Removal of noise and irrelevant information. Many genes do not contain in-
formation that is useful for determining the differences between the samples.
These genes should not be used for classification; indeed, sometimes they may
even contain noise that can lead to incorrect classification.

� Speed of training of methods. A number of methods we described, such as
neural networks, work better with less input information. We need to reduce the
dimensionality of the data before we can use these methods effectively.

� Identical information.Some genes are highly correlated and contain exactly the
same information. Inclusion of all of such genes can cause some methods to be
unreliable.

� Multiplicity. When we are looking at many thousands of genes in parallel, it
is possible that some of these genes may appear to be differentially expressed
between the different samples, but in fact these differences may be due to ran-
dom variation.
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TABLE 9.2: Advantages and Disadvantages of Four Dimensionality Reduction Methods

Principal Individual Gene Pairwise Gene
Component Analysis Selection Selection Genetic Algorithms

� Quick and easy to use
× Does not provide a

subset of classifying
genes

× Principal components
may not separate the
classes

� Quick and easy to
implement

� Generates a subset of
classifying genes

× Best individual genes
may not make the best
classifiers

× Need to combine
selected genes to
produce classifier

� Can generally find
good classifiers

� Generates a subset of
classifying genes

× Need to combine
selected genes to
produce classifier

× Slower than individual
gene selection

� Finds the best
classifiers

� Generates a subset of
classifying genes

× Slowest algorithm
× Need programming

skills to implement

� Diagnostic tool.Frequently, the aim is to produce a prognostic or diagnostic tool
for the diseases or treatments being studied. While it might be feasible to use a
microarray as such a tool, in many cases it will be cheaper and more efficient to
produce a more focussed tool, such as quantitative PCR, that uses fewer, more
relevant, genes.

� Hypothesis generation. A classification based on a small number of genes can
be the basis of scientific hypotheses about the role of the relevant genes in the
different diseases or treatments being studied. To do this, we need to find those
genes.

The selection of an appropriate subset of genes is a difficult problem and is the
subject of ongoing research. In the theory of computer science, a problem is classed
as hard if the number of steps to evaluate the solution increases exponentially with
the size of the problem. In this case, the number of possible subsets of N genes is
2N, so the evaluation of all possible groups of genes increases exponentially with the
number of genes in the study.

The four methods we describe are all commonly used and are seen frequently in
the literature. All methods have their advantages and disadvantages. The methods we
describe are

� Principal component analysis
� Individual gene selection
� Pairwise gene selection
� Genetic algorithms

To illustrate these methods, we will apply them to data set 9A using a number of
the classification methods described in Section 9.2, and the training and test sets of
Example 9.6. In Table 9.2, we summarise the advantages and disadvantages of each
of these methods.
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Principal Component Analysis

The first method we describe does not actually find a subset of relevant genes, but uses
principal component analysis (PCA) to reduce the dimensionality of the data. PCA is
described in full in Section 8.3; it is straightforward to use because it is implemented
in all gene expression packages, as well as more advanced data analysis packages such
as R and Matlab.

EXAMPLE 9.8 PCA APPLIED TO DATA SET 9A

When PCA is applied to data set 9A, many the classification methods (with the ex-
ception of KNN) have been able to separate the data (Figure 9.6; Table 9.3). However,
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Figure 9.6: Principal component analysis (PCA). PCA is a popular method for reducing the dimen-
sionality of the gene expression matrix before applying a classification algorithm. Here, it has been
applied to data set 9A. (a) The two groups of patients (ALL and AML) plotted in the first two principal
components. In this case, the data are separable by principal components. This is not necessarily al-
ways true with microarray data and for this reason principal components are not necessarily the best
dimensionality reduction method. (b) The first 10 principal components all contribute to the overall
variability of the data. It would make sense to include all of these components in the classification ana-
lysis. Other data sets (e.g., data set 8A) have fewer principal components contributing to the overall
variability (Table 8.3), so in that case one would use a smaller number of principal components in the
classification analysis. (c) The data points from the independent test set are mapped onto the first two
principal components of the training set. In general, the separation is good; there are a small number
of samples in the boundary region that would be misclassified by the first two principal components.

(continued )
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TABLE 9.3

Predictions of different algorithms applied to data set 9A using the 10 most significant principal
components and using 38 patients in a training set and 24 patients in a test set. The number of
samples in each of the classes is given in parentheses. With most algorithms, PCA worked very well.
This is not always the case.

Training Training Test Test
Method ALL (27) AML (11) ALL (14) AML (10)

Nearest centroid 26 11 14 10
KNN (k = 3, l = 3) 26 11 12 3
LDA 26 11 13 10
Neural network (10 HNs) 27 11 14 8
Neural network (20 HNs) 27 11 14 10

although this is true of this particular data set, it is not necessarily true of other data
sets.

There are several factors that have to be considered when using PCA for classifica-
tion:

� PCA still requires the measurements of large numbers of genes. If the aim is to
have a small number of genes that can be measured for future diagnostic use,
PCA is useless.

� PCA finds axes that capture the variability in the overall data. These may not
necessarily be the axes that separate the classes. If the classes are separated
by the principal components, then PCA is an excellent method; if the principal
components do not separate the classes, then PCA must be abandoned and a
different method must be used.

� PCA is based on linear combinations of genes; if non-linear combinations of
genes are needed to separate the data, PCA will not work.

Individual Gene Selection

The simplest method that actually chooses genes is to rank the genes that individually
discriminate best between the two classes and then use the best genes as classifiers. A
good measure of discrimination that is most commonly used is the t-statistic (Section
7.3). This captures the difference between the means of the classes as a ratio of the
standard deviation of the two groups.

EXAMPLE 9.9 HIGHEST RANKED INDIVIDUAL GENES FOR DATA SET 9A

The top genes that can discriminate between the ALL and AML patients of data set 9A
all have very goodp-values associated with their t-statistics (Table 9.4). However, even
the best gene does not separate the classes very well compared with the separation
that can be achieved by two or more genes (Figure 9.7). Two of the genes in this table,
C-myb and leptin receptor, form a good classifier as a pair of genes (Table 9.5). How-
ever, other genes that form good pairwise classifiers are not necessarily good classifiers
individually.
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TABLE 9.4: Top 10 Genes That Individually Classify the AML and ALL Patients

Gene t-test p-value

CD33 antigen 1.9E-09
C-myb gene 6.32E-09
Leptin receptor 8.93E-08
Cathepsin D 1.99E-07
Transcription factor 3 2.02E-07
Connective tissue activation peptide III 3.48E-07
Myosin light chain 4.19E-07
Granulin 4.31E-07
Retinoblastoma binding protein P48 5.32E-07
NADPH-flavin reductase 6.85E-07

Note: The top 10 genes according to p-value of a t-test applied to the two groups on a gene-by-gene
basis (Section 7.2). The genes have been prefiltered to include only genes that have been expressed
in all patients. Note that in this particular case, C-myb gene and leptin receptor together are a good
predictor of the two classes (Table 9.6). However, most of the other genes that are good predictors in
pairs are not necessarily good at predicting the classes in isolation.

The classification methods described in Section 9.2 can be used with the top dis-
criminating genes (Table 9.4) to build a classification model for data set 9A, either
directly (Table 9.5) or using a voting algorithm (see later discussion). Although this
method has worked well with the training set, it has not performed as well with the
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Figure 9.7: Individual gene classification. The gene that best distinguishes between the ALL and AML
patients as measured by the t-statistic is CD33 antigen (Table 9.4). It does not separate the classes
very well: there is substantial overlap in the gene expression values. Methods for gene selection based
on choosing the best individual genes are not generally very good.
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TABLE 9.5

Predictions of different algorithms on data set 9A, using the training and test sets of Example 9.6
and using the 10 best genes as determined by single-gene classification (Table 9.4). In this case, the
training data are linearly separable using the 10 best genes; we have already seen this in Figure 9.1b,
where the genes C-myb and leptin receptor separate the classes. Using these genes, all methods have
performed comparably, but no methods have been able to predict all of the test AML cases correctly.
It would appear likely that the test data are not separable with these 10 genes.

Training Training Test Test
Method ALL (27) AML (11) ALL (14) AML (10)

Nearest centroid 27 11 14 8
KNN (k = 3, l = 3) 27 11 14 7
LDA 27 11 14 8
Neural network (10 hidden nodes) 27 11 14 5
Neural network (20 hidden nodes) 27 11 14 7

test data, with only between 5 and 8 of the 10 AML patients being classified correctly.
It is likely that the training data are not separable using these 10 genes.

In general, individual gene selection is the weakest method for selecting genes to use
for discrimination. The reason for this is that genes that are good individual classifiers
may not work well together to classify samples. Conversely, genes that do work well
together to classify the samples may not be good individually. For this reason, it is
recommended that you use a method that looks at pairs or groups of genes to classify
the data.

Pairwise Gene Selection

This is a more sophisticated method than relying on single genes: it looks at pairs of
genes that are best able to discriminate the samples using the chosen method and
then combines these genes to generate the overall predictor.

For example, with a KNN algorithm, we would apply the algorithm to all pairs of
genes, and then select (say) the five best pairs of genes for a 10-gene predictor. A
similar approach could be used for each of the methods.

EXAMPLE 9.10 PAIRWISE GENE SELECTION USING KNN

Using data set 9A, the KNN algorithm has been applied to the 500 most varying genes
to identify 10 pairs of genes that each correctly classifies 37 out of the 38 patients in a
cross-validation of the training set (Table 9.6). These correspond to 14 unique genes,
which can be used to build a classifier. If KNN is applied using all 14 genes, then every
sample in the training set is classified correctly. However, the algorithm performs less
well on the test set, with only 15 out of 24 correct (Table 9.7).

Pairwise gene selection can be used to reduce dimensionality for all of the methods
described in Section 9.2. In general, pairwise gene selection performs better than indi-
vidual gene selection (Table 9.7). However, it is slower than individual gene selection,
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TABLE 9.6

Pairwise gene selection has been applied to the training set of data set 9A using the KNN algorithm.
There are 10 pairs of genes that correctly predict 37 out of 38 patients in a cross-validation of the
training set. There are 14 unique genes in this list, which can be used as genes for classification of
these tissues.

Training Training

Genes ALL (27) AML (11)

Ferritin heavy chain CD33 antigen 27 10
RLIP76 protein mRNA CD33 antigen 27 10
Casein kinase 1 delta CD33 antigen 27 10
DNA-damage-inducible

transcript 1
CD33 antigen 26 11

NADPH-flavin reductase CD33 antigen 27 10
LEPR leptin receptor C-myb gene 26 11
Cholinergic receptor, nicotinic,

alpha polypeptide 7
C-myb gene 26 11

Cholinergic receptor, nicotinic,
alpha polypeptide 7

Topoisomerase (DNA) II
beta

27 10

Catalase Cytoplasmic dynein light
chain 1

26 11

Nucleoside-diphosphate
kinase

Retinoblastoma binding
protein P48

27 10

because the number of pairs of genes is approximately half the square of the number
of genes.

Voting Algorithms

There are two ways to combine classifying genes that are selected using single gene or
pairwise gene selection algorithms. The first method is to use all the genes together
in the algorithm. In Example 9.10, there are 10 pairs of genes selected for KNN, with
14 unique genes among them. These 14 genes can be used to build a single KNN
predictor.

TABLE 9.7

Predictions of different algorithms using the 10 best genes selected by pairwise gene selection on data
set 9A. Most of the algorithms performed better with pairwise gene selection than with individual
gene selection.

Training Training Test Test
Method ALL (27) AML (11) ALL (14) AML (10)

Nearest centroid 26 11 14 10
KNN (k = 3, l = 3) 27 11 11 4
KNN (k = 3, l = 0) 27 11 13 8
LDA 26 11 13 10
Neural network (10 HNs) 27 11 14 8
Neural network (20 HNs) 27 11 14 10
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TABLE 9.8

The 14 test samples are classified using voting from the 10 pairs selected by KNN (Table 9.6). In each
row, we count the number of times the individual was classified as ALL, unclassified or classified as
AML by the 10 pairs. All ALL samples are correctly classified; there is more difficulty with the AML
samples – 6 out of 10 are correctly classified.

Sample ALL Unclassified AML

ALL 1 8 1 1
ALL 2 7 3 0
ALL 3 8 0 2
ALL 4 9 0 1
ALL 5 10 0 0
ALL 6 10 0 0
ALL 7 10 0 0
ALL 8 9 1 0
ALL 9 10 0 0
ALL 10 9 1 0
ALL 11 10 0 0
ALL 12 9 1 0
ALL 13 10 0 0
ALL 14 10 0 0
AML 1 0 1 9
AML 2 0 2 8
AML 3 0 0 10
AML 4 4 5 1
AML 5 3 3 4
AML 6 2 3 5
AML 7 6 4 0
AML 8 4 4 2
AML 9 1 2 7
AML 10 7 2 1

The second method is to use a voting algorithm. In a voting algorithm, each sample
is classified by each gene or pair of genes selected, and the majority classification is
used as the class of that gene.

EXAMPLE 9.11 USING A VOTING ALGORITHM WITH PAIRWISE KNN

The 10 pairs of genes are used to classify each of the 24 test samples in turn. The first
ALL sample is classified 8 times as ALL, is unclassified once, and classified once as
AML. All 14 ALL samples have been correctly classified, and 6 of the 10 AML samples
have been correctly classified (Table 9.8).

Genetic Algorithms

The most powerful method we describe to choose gene subsets is a method known
as a genetic algorithm. Genetic algorithms are computational methods for solving
difficult problems that have their inspiration in evolutionary biology.

In biology, organisms with different genotypes have different phenotypes, which
are more or less fit, and so pass on more or fewer offspring to the next generation. In



SECTION 9.4 DIMENSIONALITY REDUCTION 207

genetic algorithms, there is a population of solutions to a given problem; each solution
has a “genotype,” which describes the parameters of the solution. The fitness of the
solution is its ability to solve the problem. The most fit individuals are selected in each
generation to produce offspring for the next generation.

As with real biology, the individual solutions can produce offspring both asexually
and sexually. With asexual reproduction, the offspring are identical to the parent,
with the possibility of changes via random mutation. With sexual reproduction,
the “genomes” (parameters) of two individuals are recombined to produce a new
individual.

We will describe a simple genetic algorithm that can be used for choosing gene
subsets for classification analyses. As you will see, there are many ways in which
genetic algorithms could be implemented, and they can be used with any of the
classification methods. The implementation we describe is not necessarily the best of
these: it is included for illustrative purposes, and we will also describe some possible
modifications.

The Algorithm

There is a population of N individuals, each of whom has a genome consisting of a
list of ngenes that will be used together as a classifier. There are five steps:

1. Each individual starts with a random choice of ngenes.
2. Construct a new, larger population from the old population; this will typically

be of size 3N, using three methods of reproduction:
(a) Cloning. N individuals in the new population are identical to the N indi-

viduals in the old population.
(b) Mutation. N individuals are created from each of the N individuals in the

old population, which are identical to each of their parents, but with one
gene randomly changed to a different gene.

(c) Recombination. N individuals are created by randomly selecting two par-
ents from the previous generation, combining their genes into a single pool,
and then selecting ngenes from the combined pool.

3. Calculate the fitness of each of the 3N individuals. In this case, the fitness will
be the number of samples that are correctly classified in a leave-one-out cross-
validation of the classification method applied to the training set using the n
genes of that individual.

4. Select the best N individuals to form the next generation.
5. Return to step 2 and continue until the population contains sufficiently good

solutions.

EXAMPLE 9.12 GENETIC ALGORITHM WITH KNN

As an example, we apply this genetic algorithm to select a group of 8 genes that will
classify the ALL and AML samples of data set 9A. In this case, we will use a popula-
tion size of 50, and have 8 genes in each classifier. In the seventh generation of the
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TABLE 9.9: Genes Selected by Genetic
Algorithm with KNN

A simulation of the genetic algorithm described
in the text produced an 8-gene solution that was
able to correctly classify all 38 patients in a leave-
one-out cross-validation of the training set of
data set 9A using a KNN algorithm with k = 3.

Tyrosine Phosphatase Epsilon
Basigin
Transcription elongation factor B
TCF3 transcription factor 3
Cholinergic receptor nicotinic alpha

polypeptide 7
Transmembrane protein
Mitochondrial 60s ribosomal protein L
Cathepsin D

simulation I ran, there was a classifier that reported 38 out of 38 correct classifications
on a cross-validation of the training set (Table 9.9). When this classifier is applied to
the test set, all 14 ALL patients were correctly classified, and 7 out of 10 AML patients
were correctly classified.

This algorithm is just one example of how a genetic algorithm could be imple-
mented to solve this problem. There are many modifications that could be applied to
the algorithm, including:

� Varying the population size;
� Varying the number or proportion of offspring created at each generation via

cloning, mutation or recombination;
� Allowing different individuals to have different numbers of genes, possibly in-

cluding increased fitness for classification using fewer genes.

Genetic algorithms are widely applicable to many difficult computation problems.
However, there is a cost, too: genetic algorithms are notoriously slow, because they
use random events to generate the next generation.

KEY POINTS SUMMARY

� There are several methods for classifying samples, each with advantages and dis-
advantages, including:
� K-nearest neighbours
� Centroid classification
� Linear discriminant analysis
� Neural networks
� Support vector machines
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� With microarray data, we need to reduce the dimensionality of the data to find
groups of genes that are able to separate the data. There are several methods for
doing so, including
� Principal component analysis
� Individual gene selection
� Pairwise gene selection
� Genetic algorithms

� Classification analyses should be verified using training and test sets and/or cross-
validation.

FURTHER READING AND RESOURCES

Data Set 9A

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,
H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S.
1999. Molecular classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science 286: 531–36.

Classification has been performed using individual gene selection and a voting algo-

rithm.

Data Set 9B

Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F.,
Schwab, M., Antonescu, C.R., Peterson, C., and Meltzer, P.S. 2001. Classification
and diagnostic prediction of cancers using genes expression profiling and artificial
neural networks. Nature Medicine 7: 673–79.

Classification has been performed with neural networks.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. 2002. Diagnosis of multiple
cancer types by shrunken centroids of gene expression. Proceedings of the National
Academy of Sciences 99: 6567–72.

Classification using a version of centroid classification.

Bo, T.H. and Jonassen, I. 2002. New feature subset selection procedures for classifica-
tion of expression profiles. Genome Biology 3: research0017.1–0017.11.

Description of pairwise gene selection applied to microarray data.

Li, L., Weinberg, C.R., Darden, T.A., and Pedersen, L.G. 2001. Gene selection for sam-
ple classification based on gene expression data: Study of sensitivity to choice of
parameters of the GA/KNN method. Bioinformatics 17: 1131–42.

Classification using K-nearest neighbours and a genetic algorithm.
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Furey, T.S., Christianini, N., Duffy, N., Bedarski, D.W., Schummer, M., and Haussler, D.
2000. Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 16: 906–14.

Classification using support vector machines.

Software

http://www.r-project.org/

The R statistical package is available for free and contains implementations of all the

methods we describe in this chapter.

Books

Webb, A. 2002. Statistical Pattern Recognition. John Wiley & Sons. 2nd Ed. New York.

Hastie, T., Tibshiramni, R., and Friedman, J. 2001.TheElements of Statistical Learning,Data

Mining, Inference and Prediction. Springer: New York.



CHAPTER TEN

Experimental Design

SECTION 10.1 INTRODUCTION

The design of experiments is one of the most important areas of microarray bioinfor-
matics and is a long-standing topic in classical statistics. The reason for good exper-
imental design is that it allows you to obtain maximum information from an experi-
ment for minimum effort – which translates into time and money. The alternative to
good experimental design is to perform microarray experiments which produce data
that cannot be analysed.

You might ask why it is that this topic appears at this point in the book, after
data analysis rather than earlier in the book, alongside the material on the design
of microarrays themselves. There are two reasons for this. The first is that the topics
in this section use concepts from some of the earlier chapters, most importantly the
ideas of hypothesis tests andp-values introduced in Chapter 7. But there is also a more
philosophical reason why I have chosen to place the material on experimental design
after the material on data analysis. In my view, it is absolutely critical to understand
the scientific questions you are trying to answer, or even the scientific hypotheses you
are seeking to generate, before you design your experiment. To this end, you should
have a clear idea of the structure of the data you are seeking to produce and the types
of data analysis you intend to employ before you design an experiment.

This chapter considers three areas of experimental design:

Section 10.2: Blocking, Randomisation and Blinding, looks at the statistical prob-
lems of confounding and bias, and the methods that are used to resolve these
issues.

Section 10.3: Choice of Technology and Arrangement of Samples, discusses the
relative benefits of Affymetrix and two-colour array platforms; and the arrange-
ment of samples on arrays in a number of types of microarray experiment.

Section 10.4: How Many Replicates?, describes statistical methods to determine
the number of replicates you would need to use in microarray experiments to
obtain data that can detect the effects you are looking for.

SECTION 10.2 BLOCKING, RANDOMISATION AND BLINDING

We introduce the topic with a simple example, for which we describe three experi-
mental designs: the first two are seriously flawed, and the third is better.

211
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Alison

Brian

Treated

Control

Print Run 1 Print Run 2

Print Run 1 Print Run 2

Treated

Control

Figure 10.1: Blocked balanced design. There are 16 rats being used in the experiment, 8 treated
with the toxin benzo(a)pyrene, and 8 treated with a control substance. Samples will be hybridised to
two batches of 8 arrays from two print runs, and there are two researchers, Alison and Brian. Alison
and Brian each treat 4 rats with toxin and 4 rats with the control substance; they prepare samples and
hybridise 2 samples from each of the treated and control rats to 2 arrays from each of print runs 1 and
2. This is an example of a balanced design, which maximises the power of the experiment.

EXAMPLE 10.1 TOXIC RESPONSE TO BENZO(A)PYRENE

In an experiment to investigate the effects of benzo(a)pyrene, a known hepatotoxin,
8 rats will be treated with benzo(a)pyrene, and 8 rats will be treated with a control
substance. Liver samples will be prepared from all 16 rats and hybridised to 16 arrays.
The sample preparations and hybridisations will be performed by two researchers,
Alison and Brian, and the 16 arrays have come in two batches of 8 arrays from two
separate print runs.

Experimental Design 1

Alison chooses 8 rats and treats them with benzo(a)pyrene. She prepares liver samples
from the rats and hybridises them to the 8 arrays from the first print run. Brian takes
the remaining rats and treats them with the control substance; he prepares samples
and hybridises them to the 8 arrays from the second print run.

Experimental Design 2

Alison chooses eight rats, and treats four with benzo(a)pyrene and four with the control
substance. She chooses four arrays from each of the print runs, and hybridises samples
from two treated rats and two control rats to each of the batches of four arrays. Brian
does likewise with the remaining eight rats and eight arrays (Figure 10.1).
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Experimental Design 3

Eight rats are randomly allocated to Alison; similarly, four arrays from each of the two
print runs are also randomly allocated to Alison. Four preparations of benzo(a)pyrene
and four preparations of the control compound are given to Alison in a way that she
does not know the identity of any of the preparations. The arrays are prearranged for
Alison so that she will hybridise two treated and two control rats to four arrays from
each batch, with random allocation. Brian does likewise.

Although the faults of the first two designs may appear obvious to many readers,
it is remarkable how many stories I have heard of microarray experiments being run
in the manner of design 1. The problem with design 1 that is resolved in design 2 is
confounding; the problem with design 2 that is resolved in design 3 is bias.

Confounding and Blocking

Suppose we use design 1 for the experiment, and a statistical analysis (such as a t-
test or bootstrap test described in Chapter 7) is applied to identify genes that are up-
or down-regulated in the treatment group relative to the control group. We would
like to be able to say that these genes are up- or down-regulated as an effect of the
hepatotoxin benzo(a)pyrene. However, the observed differences in gene expression
could be because Alison and Brian handle the samples in a different way, and may
not be related to the toxin. Alternatively, the observed differences in gene expression
could have resulted from differences in the two batches of arrays and may not be
related to the toxin. With this experimental design, we cannot know which of the
three factors – treatment, researcher or batch – is responsible for the differences in
gene expression. We say that these factors are confounded.

The problem of confounded variables is resolved via a technique called blocking.
Experimental design 2 is an example of a blocked experiment. In this example, there
are two blocking factors: the experimenter and the print run. Each of the eight arrays
is allocated evenly between the two blocking factors (Figure 10.1). Therefore, if there
is a significant difference in gene expression between the treated and control rats, it
is possible to attribute that difference to the treatment, and it cannot be because of
researcher or print run.

This is also an example of a balanced design. An imbalanced design might have
uneven numbers of rats in the control and treatment groups, or uneven numbers of
the two groups allocated to Alison and Brian. Balanced designs are more powerful
than imbalanced designs; we discuss the meaning of power in Section 10.3.

It is important to notice that running the experiment in a balanced and blocked
fashion adds no extra cost and no extra time to the experiment but makes a very
important difference in how you can interpret the results.

Bias, Randomisation and Blinding

Experimental design 2 suffers from a problem known as bias. When Alison chooses the
rats, she might choose rats that are in some way similar: they might be the healthiest
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looking, or the most docile, or anything else. There is no suggestion of impropriety on
Alison’s part: all people make subconscious choices without realising it. Therefore, by
having Alison choose the rats she uses, we introduce a potential variability between
the two groups of rats used by the two researchers.

Experimental design 3 uses randomisation to remove this bias by randomly allo-
cating rats to the two researchers.

There is a second source of bias in experimental design 2. If Alison and Brian know
to which rats they are giving the toxic benzo(a)pyrene, and to which rats they are giving
the control substance, one or both of them might behave differently in the way they
treat the two groups of rats. Again, there is no suggestion of impropriety: it may be
purely subconscious factors that result, for example, in Brian treating the poisoned
rats with greater care than the control rats.

Experimental design 3 uses blinding to avoid this bias: Alison and Brian are not
aware which rats are treated with toxin and which rats are treated with control com-
pound. As a result, they will treat both groups of rats in the same way.

SECTION 10.3 CHOICE OF TECHNOLOGY AND ARRANGEMENT
OF SAMPLES

The problems of confounded variables and bias are ubiquitous to all experimental
design and not just microarray experiments. This section discusses three problems
specifically associated with microarray experiments:

� Is it better to use Affymetrix arrays or a two-colour array system?
� If using a two-colour array system, is it better to use a reference sample?
� If using a two-colour array system, what is the best arrangement of samples on

the slides?

There is no universally correct answer to these questions. We will look at three types
of experiment and show how the considerations of each case lead to different conclu-
sions. There are also many factors that are not going to be determined by statistics; for
example, whether to use Affymetrix arrays or two-colour microarrays may be deter-
mined by the facilities available to your laboratory. Similarly, whether to use a design
that requires 20 or 40 arrays may be determined by financial constraints. However,
there are statistical reasons why some of these designs are better than others. These
are the areas we focus on in this section.

EXAMPLE 10.2 HEPATOCELLULAR CARCINOMAS

Samples are taken from disease and healthy tissue from patients suffering from
hepatocellular carcinomas and hybridised to microarrays. We would like to identify
genes that are up- or down-regulated in hepatocellular carcinomas relative to healthy
tissue.
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Figure 10.2: Experimental designs for simple microarray experiment. In an experiment to find dif-
ferentially expressed genes in 20 patients suffering from hepatocellular carcinomas, healthy and disease
tissue are taken from each patient and the prepared samples are hybridized to microarrays. Even this
simple experiment lends itself to five different experimental designs. (a) Each of the 40 samples is hy-
bridised to separate microarrays with a reference sample hybridised to the second channel. (b) Each
of the 40 samples is hybridised to a separate Affymetrix GeneChip. (c) The two samples from each
patient are hybridised to the same array, with the healthy sample in Cy3 and the disease sample in Cy5;
only 20 arrays are needed.(d) As in (c), except that 10 patients have the healthy tissue in Cy3 and the
disease tissue in Cy5, and the other 10 patients have healthy tissue in Cy5 and disease tissue in Cy3.
(e) The samples from each patient are labelled twice: once with Cy3 and once with Cy5. These sam-
ples are then hybridised to two arrays in a dye-reversal experiment. As with (a) and (b), 40 arrays are
needed.

Experimental Design 1

Forty microarrays are used. Every healthy and tumour sample is prepared with Cy5
(red). A reference sample of relevant cell lines is labelled with Cy3 (green). Each
array is hybridised with a liver sample in Cy5 and the reference sample Cy3 (Fig-
ure 10.2a).

Experimental Design 2

Forty Affymetrix arrays are used. Each array is hybridised with a different sample
(Figure 10.2b).
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Experimental Design 3

Twenty microarrays are used; on each array, the healthy sample is hybridised with Cy3
and the tumour sample from the same patient is hybridised with Cy5 (Figure 10.2c).

Experimental Design 4

Twenty microarrays are used. On 10 arrays, the healthy sample is hybridised with Cy3
and the tumour sample is hybridised with Cy5. On the other 10 arrays, the healthy
sample is hybridised with Cy5 and the tumour sample with Cy 3 (Figure 10.2d).

Experimental Design 5

Forty microarrays are used. Every healthy and tumour sample is labelled twice, once
with Cy3 and once with Cy5. The healthy and tumour samples from each patient are
hybridised to two arrays, once with the healthy Cy3 and the tumour Cy5, and once
with the healthy Cy5 and the tumour Cy3 (Figure 10.2e).

The first point to observe is that we have described five different experimental
designs for what is a very simple microarray experiment. There is a lot of choice in
how to run the experiment, and the choices you make will have an impact on how you
interpret the data. There are many obvious differences between the designs: designs
1, 3, 4 and 5 use two-colour arrays, whereas design 2 uses Affymetrix arrays; designs
1, 2 and 5 use 40 arrays, whereas designs 3 and 4 use 20 arrays. Design 1 includes a
reference sample. What is the best way to run this experiment?

This example is a paired experiment and will require a paired analysis (Section 7.1).
We are comparing two samples from the same patient in order to identify genes that
are up- or down-regulated, and the two samples from each patient bear an obvious
relationship to each other. Because of this, there is a clear case for using a two-colour
array and to hybridise the two samples from the same patient to the same arrays.

Estimating Variability

We can estimate the variability of the different experimental designs with simple
calculations based on the log-normal model introduced in Chapter 6. If the coefficient
of variability of the hybridisation signal on an array is v, then the variance of the log
of the signal, σ 2, is given by the following equation:

σ 2 = ln(v2 + 1) (Eq. 10.1)

Equation 10.1 is identical to Equation 6.1. If, for example, the coefficient of variability
is 30%, then the variance is 0.086, and the standard deviation in the log signal is 0.29.
Note that this is a natural logarithm, and to compute the standard deviation to base
2, divide this standard deviation by ln(2). In this case, the standard deviation in log to
base 2 would be 0.42.

With experimental design 1 (reference sample), the log ratio of gene expression
between the two samples is calculated indirectly by computing the log ratios of the
healthy and disease samples to the reference samples and then subtracting these two
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log ratios. Because there are four samples involved in this calculation, there are four
contributions of the variance σ 2 to the total variance, which is 4 × 0.086 = 0.344. So
the standard deviation of the log ratio is

√
0.344 = 0.59.

With experimental designs 2 (Affymetrix) and 3 (same array hybridisation), the
log ratio is calculated directly. In design 2, we calculate the log ratio of the samples
as the log of the ratio of the two Affymetrix signals, and in design 3, we calculate
the log ratio of the red and green signals on the array. There are only two contribu-
tions of the variance σ 2 to the total variance. So the total variance is 0.172 and the
standard deviation of the log ratio is 0.41. Therefore, experimental designs 2 and 3
have smaller errors and so both are better than experimental design 1 for this type of
experiment.

This calculation is not exact; we have assumed that the variability of hybridisa-
tions between arrays is equal to the variability of hybridisations to the same array. In
Chapter 6 we saw that this is not the case. The variability between arrays is generally
higher than the variability of signals on the same array, so this experiment is better
performed on two-colour arrays where the two samples from each patient can by
hybridised to the same array than on Affymetrix arrays where the two samples from
each patient have to be on different arrays.

Confounding and Colour Swaps

Experimental design 3 is not the best design for this experiment for other reasons.
There is a problem: all of the healthy samples are labelled with Cy3, and all of the
disease samples are labelled with Cy5. If, in the analysis, we see a gene that appears
to be differentially expressed, this could result from the disease state, or it could
result from differential incorporation of the Cy dyes. With experimental design 3, the
labelling is confounded with the factor of interest (disease/healthy tissue), and we
cannot tell which of these factors would be responsible for an observed differentially
expressed gene.

In experimental designs 4 and 5 this problem has been resolved. Experimental
design 4 is a balanced blocked design. The red and green dyes are a blocking variable,
and so it is possible to determine the genes that are differentially expressed in diseased
tissue.

Experimental design 5 is what is known as a full-factorial design, because each pa-
tient has had each sample hybridised twice, once with each Cy dye. There are two ad-
vantages of experimental design 5 over experimental design 4, and one disadvantage.

The first advantage of design 5 is that there are two measurements of log ratio for
each patient, using the same number of arrays as experimental design 1 (reference
sample). This is a form of technical replication and reduces the standard deviation of
the measured log ratio by a factor of

√
2; for example, with a coefficient of variability

of 30%, the standard deviation of the log ratio in experimental design 5 would be 0.29,
compared with 0.41 in experimental design 4, and 0.59 in experimental design 1.

The second advantage is that the data can be analysed with a straightforward t-test
or bootstrap t-test, whereas experimental design 4 will require a more sophisticated
ANOVA analysis, and a more complex bootstrap to obtain p-values (Section 7.6).



218 EXPERIMENTAL DESIGN

Patient 2

Patient 1Cy3 (Green)

Cy5 (Red)

Array 1

(a)

(c)
Patient 1

GeneChip 1

X 60

Reference

Patient 1Cy3 (Green)

Cy5 (Red)

Array 1

(b)
X 60

X 30

Figure 10.3: Experimental design for lymphoma
study. Samples are taken from 60 patients suffering
from diffuse large B-cell lymphomas. The aim is to
identify clinically relevant subgroups of patients using
cluster analysis and then to build a predictor to differ-
entiate between the classes. There are three possible
experimental designs: (a) Samples from 30 patients
are labelled with Cy3, and samples from the other
30 patients are labelled with Cy5. These are hybri-
dised to 30 different two-colour arrays. (b) Samples
from all 60 patients are labelled with Cy3. These are
hybridised with Cy3 and hybridised to 60 separate
arrays. A universal reference sample is hybridised
in Cy5 to each of the arrays. (c) Samples from each
patient are hybridised to 60 Affymetrix GeneChips.

The obvious disadvantage of experimental design 5 is that it requires twice as many
arrays as design 4 and twice as many labelling reactions as any of the other designs.
The design you choose would therefore depend on the financial resources available
to your laboratory.

EXAMPLE 10.3 B-CELL LYMPHOMAS

Samples are taken from 60 patients suffering from B-cell lymphomas and are hy-
bridised to microarrays. The aim of the experiment is to identify clinically relevant
subgroups of patients using a cluster analysis and then to build a classification model
to differentiate between the subgroups.

Experimental Design 1

Thirty patient samples are prepared and labelled with Cy3, and 30 patient samples
are prepared and labelled with Cy5. These are hybridised to 30 different two-colour
arrays (Figure 10.3a).

Experimental Design 2

The samples from each patient are prepared and labelled with Cy3 and hybridised to
60 different two-colour arrays; a universal reference sample is hybridised in Cy5 to
each array (Figure 10.3b).

Experimental Design 3

The samples from each patient are prepared and hybridised to 60 different Affymetrix
arrays (Figure 10.3c).

Experimental design 1 is not a good design. In order to be able to apply the clustering
methods of Chapter 7 or the classification methods of Chapter 8, we need to be able
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to compare each of the samples with the other on an equal footing. However, this
design does not allow us to do this. Although the pairs of unrelated samples that have
been hybridised on the same array can be compared easily, it is very difficult to make
a comparison between two samples hybridised on different arrays, particularly if they
are also labelled with different dyes. So although it might be tempting to use a design
that requires half the number of arrays as designs 2 or 3, the data derived from this
experiment would not naturally lend themselves to analysis.

Experimental design 2, on the other hand, is much better suited for the analyses that
will be performed. Each sample can be normalised relative to the reference sample,
so each sample can be meaningfully compared with the others for the purposes of
cluster analysis or classification analysis.

Experimental design 3 is also a good design. The uniformity of the Affymetrix plat-
form makes comparisons between the samples meaningful; any “dark” arrays can be
normalised using between-array normalisation (Section 5.4).

EXAMPLE 10.4 TIME SERIES

Budding yeast can reproduce sexually by producing haploid cells through a process
called sporulation. Yeast was placed in a sporulating medium and samples were taken
at seven time points from the start of sporulation. We are interested in identifying
genes that show similar profiles in the timecourse.

Experimental Design 1

The samples from the seven time points are hybridised to seven Affymetrix arrays
(Figure 10.4a).

Experimental Design 2

The samples from the six time points after time zero are prepared and labelled with
Cy3. A larger sample from the time zero time point is prepared and labelled with
Cy5 as a reference sample.1 The samples are hybridised to six arrays, with each
time point in the Cy3 channel and the time zero sample in the Cy5 channel (Fig-
ure 10.4b).

Experimental Design 3

The samples from the seven time points are each labelled twice: once with Cy3 and
once with Cy5. The arrays are hybridized to seven arrays as shown in Figure 10.4c.
This is known as a loop design.

Experimental design 1 has a serious problem, which would also be true of perform-
ing this type of experiment using one colour on a microarray, or using radioactively

1 Early time-course experiments used the sample at time zero as a reference sample. More recently,
researchers are employing the better practice of using a mixture of sample from all time points as a
common reference sample. This has the advantage of ensuring that there is signal in the reference
sample from all genes that are expressed at some point during the time course.
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Figure 10.4: Experimental design for time series study. Budding yeast is treated with sporulating
medium; samples are taken at seven different time points and hybridised to microarrays. There are
three common experimental designs: (a) Samples from each time point are hybridised to seven different
Affymetrix GeneChips. (b) The sample from time zero is used as a reference sample, labelled with Cy5
and hybridised to all arrays. Samples from the other six time points are labelled with Cy3 and hybridised
to six different two-colour arrays. (c) Samples from all seven time points are labelled twice: once with
Cy3 and once with Cy5. These are hybridised to the arrays in the pattern shown. This is known as a
loop design.

labelled samples on nylon filters. The stimulation of a cell culture can possibly lead
to global changes in gene expression over the course of the time series. Suppose one
particular array, corresponding to a particular time point, is “brighter” than the oth-
ers. This could have two interpretations. First, it could be that this is an experimental
artifact resulting from differential hybridisation; second, it could be that overall gene
expression is higher at that time point (Figure 10.5).

If we use Affymetrix technology, or a different single-colour system, these two
factors are confounded and no analysis can resolve the true situation. Although it is
tempting to apply between-array normalisation (Section 5.4), this would be incorrect
as it would remove all information about global changes in gene expression from the
analysis (Figure 10.5b).

Experimental designs 2 and 3 resolve this problem. With experimental design 2,
each sample is normalised relative to the sample at time zero, so that the measure-
ments are log ratios of the time points relative to time zero. The presumption is that
if an array is particularly bright, it will be bright for both samples (Figure 10.5a), and
so the log ratio will be free from this artifact (Figure 10.5b).

Experimental design 3 has the advantage over experimental design 2 in that there
are two independent measurements of each of the samples while using the same
number of arrays. However, there are two disadvantages. This first is that it requires a
more complex ANOVA analysis to be able to compare all the samples on all the arrays
(Section 7.6), in contrast with experimental design 2, which can be readily analysed
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Figure 10.5: Normalisation problem in single-colour time-course experiments. Budding yeast is
placed in sporulating medium and samples are taken at time 0, and after 30 minutes, 2, 5, 7, 9 and
11 hours. The experiment is designed according to experimental design 2, on two-colour arrays, with
sample taken from time zero used as a reference sample. (a) Average intensity for all the genes on
the array for both the experimental sample and the reference sample. The array at 7 hours is much
brighter than at any other time point. Had this experiment been performed without a reference sample,
for example on an Affymetrix platform, it would not be possible to determine whether this high signal
represents maximum gene induction at 7 hours or is simply a bright array. In fact, the signal on the
reference sample is also high, suggesting that this is a bright array. (b) Average log ratio of the all the
genes on the array to the reference sample. The ratio increases with time until 7 hours, which indi-
cates that gene expression over the whole genome is increasing over this time. Therefore, normalising
by the average array signal would be incorrect because this information would be lost. It is therefore
impossible to analyse this data without either a reference sample or a loop design.

without such an analysis. The second is that if a single array were to fail, it would affect
the entire analysis. With experimental design 2, the data from a failed array can be
omitted, and the other data points can continue to be used.

SECTION 10.4 HOW MANY REPLICATES?

This is the third consideration of experimental design and one of the most frequently
asked questions about microarray experiments. The answer to this question depends
on a number of factors: most critically, the type of experiment being performed, and
the analysis to be applied to the data.

In this section, we will look at methods to estimate the number of replicates needed
for experiments to detect differentially expressed genes (Chapter 7). For most practical



222 EXPERIMENTAL DESIGN

purposes, the calculations of the number of replicates for these types of experiment
suffice also for the types of experiment in which the data will be analysed with cluster
analysis (Chapter 8) or classification analyses (Chapter 9). This is because the number
of replicates can be used to determine the fold change we would want to detect in a
gene before using it in a cluster or classification analysis.

The classical way to estimate the number of replicates needed in an experiment
is with a power analysis. The concept of power is closely related to another concept,
confidence, which we touched on in Chapter 7.

Confidence and Power

The confidence of a statistical test is the probability of not getting a false positive
result. To put it another way, it is the probability of concluding that a gene is not
differentially expressed when the gene is truly not differentially expressed. From a
statistical perspective, it is the probability of accepting the null hypothesis when the
null hypothesis is true. Statisticians sometimes refer to false positive results as Type I
errors. Type I errors are generally controlled explicitly when we select a significance
level for the statistical test. For example, when one performs a statistical test with
a 1% significance threshold, one is selecting a confidence of 99%. In microarray ex-
periments, the confidence has to be adjusted to take into account multiple testing
(Section 7.5).

Thepower of a statistical test is the probability of not getting a false negative result.
This is the probability of concluding that a gene is differentially expressed when the
gene is truly differentially expressed. From a statistical perspective, it is the probability
of rejecting the null hypothesis when the null hypothesis is false. Statisticians some-
times refer to false negative results as Type II errors. Type II errors cannot be controlled
explicitly, but are controlled implicitly via the experimental design. In particular, the
power of an experiment depends critically on the number of replicates used. Thus
the choice of number of replicates is determined by the power you want to achieve in
your analysis.

Type I and Type II errors are summarised in Table 10.1. When we choose a signifi-
cance threshold, we have to make a choice about the balance between the confidence
and power of the analysis: a more stringent significance threshold gives greater confi-
dence but reduces power, and, conversely, a less stringent significance threshold gives
less confidence but increases power.2

2 A common question is which is worse: a Type I error or a Type II error. There is no statistical answer to
that question: in different situations, Type I or Type II errors may be less preferred. Statistics give you
the tools by which you can measure the rates of these errors, but it is then a matter of judgement as
to how to balance the two types of error. For example, if the purpose of the microarray experiment
is to identify novel targets for drug discovery, and a lot of money will be spent researching each
chosen target, then it may be more important not to have Type I errors, as a false positive will result
in an expensive failure. On the other hand, if the microarray is being used as a diagnostic tool for
a public health screening program for a fatal cancer, such as breast cancer, then it might be more
important not to have Type II errors. A false negative could result in a patient developing a fatal
tumour that might have been curable had it been detected earlier.
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TABLE 10.1: Type I and Type II Errors

True Situation

Our Decision Not Differentially Expressed Differentially Expressed

Not significant Correct Type II error
Significant Type I error Correct

Note: There are four possible outcomes of a statistical test. The two correct outcomes occur either if the
gene is not differentially expressed and we say that it is not significant, or if the gene is differentially
expressed and we say that it is significant. There are two possible wrong outcomes: a Type I error
occurs when the gene is not differentially expressed and the analysis concludes that it is significant; a
Type II error occurs when the gene is differentially expressed and the analysis concludes that it is not
significant. The confidence of an analysis is the probability of not making a Type I error; the power
of an analysis is the probability of not making a Type II error. The power is controlled by choosing an
appropriate number of biological replicates.

The reason why a power analysis is used to determine the number of replicates
in an experiment is because the power of a statistical test depends on the following
factors:

� The number of replicates
� The type of analysis (paired or unpaired)
� The difference in mean that we are trying to detect (which is the log ratio)
� The standard deviation of the population variability
� The significance threshold of the test

Therefore, we estimate the number of replicates needed from knowledge of the other
parameters and a predetermined desired power. Before we show how to perform such
analyses, we will discuss each of the parameters in detail.

Types of Replicates

Microarray experiments can be replicated at many different levels. Fundamentally,
there are two types of replicates: biological replicates and technical replicates.

Biological replicates are replicates taken at the level of the population being studied.
In Example 10.2, where samples are taken from 20 patients suffering from hepatocellu-
lar carcinomas, each patient is a biological replicate. In power analyses, the replicates
we refer to are always biological replicates. This is because the analysis we intend to
perform is making a statistical inference to the population from which the replicates
derive (Section 7.1). We need to include sufficient biological replicates to be certain
that the effects we see can generalise to the population (e.g., the population of patients
suffering from hepatocellular carcinomas).

Technical replicates, on the other hand, are taken at the level of experimental
apparatus. The purpose of technical replicates is to account for variability in the
experimental setup; if the experiment were of sufficiently high quality, then technical
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replicates would not be required at all. Technical replicates can be at many levels:

� Replicate features on the array, which can account for differential printing or
hybridisation

� Replicate arrays hybridised with the same sample
� Replicate sample preparations; for example, two dye-reversed labellings

Technical replicates cannot count as different samples either in the power calculations
or in the analysis of the data that is produced. Instead, it is common to take the
average of technical replicates to provide a single measure for the individual. This does
improve the reliability of the microarray data, because the experimental variability in
an average of several technical replicates is decreased.

Some microarray users pool the samples from several individuals before hybridiz-
ing to arrays. For the purposes of power calculations and data analysis, pooled samples
count as a single individual, because the information about variability between in-
dividuals has been lost in the pooling process. Therefore, in experiments where the
variation between individuals is important (e.g., experiments on human disease),
pooling should be avoided if at all possible.

Type of Analysis

In Chapter 7 we looked at data that was either paired or unpaired. The power is different
for paired and unpaired data: in general, paired tests are more powerful because the
differences between individuals are cancelled out via the pairing. In this section, we
will discuss power analyses for these types of data. It is also possible to perform power
analyses for more complex data types, such as those requiring ANOVA; this is more
advanced statistics.

Difference in Mean

The power of a statistical test depends on the difference in mean we are trying to
detect. In the case of paired data, this is the difference between the mean of the data
and zero; in the case of unpaired data, this is the difference between the means of
the two groups. In microarray analysis, where we are working with logged data, the
difference in mean translates to an average log ratio.

It should be fairly intuitive that it is harder to detect smaller differences in means
than larger ones. For example, it is more difficult to detect 1.5-fold differentially ex-
pressed genes than 3-fold differentially expressed genes. However, it is important to
appreciate that we are not using the fold ratio as a threshold for detecting genes; we are
simply stating that the power of the hypothesis tests described in Chapter 7 depends
on the level of differential expression, as well as other parameters.

Standard Deviation

The power of a statistical test also depends on the level of variability in the popula-
tion. In these calculations, we make the assumption that the errors in gene expression
measurements are log-normally distributed (see Chapter 6). This assumption is only
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approximately true for most microarray experiments; for this reason, we do not rec-
ommend using t-tests to identify differentially expressed genes (Section 7.3). However,
power analyses are only an approximate guide to estimating number of replicates and
are not a precise measure; thus, deviations from the log-normal assumption are not a
serious problem. If you prefer to perform power analyses without assuming that the
data is log-normally distributed, it is possible to perform bootstrap power analyses;
the interested reader is referred to the book on bootstrapping listed at the end of
Chapter 7.

Power Analysis Calculation and Tables

The formulae for power analyses are complicated. However, most statistical packages
have implementations of power analyses; in this section, we will show how to use the
power analysis function in the R package. This has the advantage of allowing the user to
select very stringent confidence levels. We need this flexibility because in microarray
experiments we use very high levels of confidence (or low significance thresholds) in
order to control the false-positive rate. The R function is

power.t.test(n,delta, sd, sig.level,power, type,alternative) (Eq. 10.2)

where

� n is the number of replicates (in a one-sample test) or group size (in a two-sample
test).

� delta is the difference in mean that we are trying to detect (which is the log ratio).
� sd is the standard deviation of the population variability (calculated using

Equation 10.2).
� sig.level is the significance threshold.
� power is the desired power.
� type can be one.sample or two.sample; one.sample is used for paired analyses,

and two.sample is used for unpaired analyses.
� alternative can be one.sided or two.sided. (In microarray experiments we are

almost always looking for both up- or down-regulated genes, so we generally
use two.sided.)

To use the formula, one of the variables n, delta, sd, sig.level or power is omitted, and
the function then calculates the value of the omitted variable. Usually, either we omit
n and supply a desired power so that the formula returns the number of replicates
we need, or we omit power and supply the number of replicates in the study, so the
formula returns the power of our experiment.

In Table 10.2, we have used the R package to calculate powers of one-sample and
two-sample analyses for detecting 2-fold differentially expressed genes, with a signif-
icance of 0.0001 (which would give 1 false positive on a 10,000-gene microarray), for
a variety of levels of population variability and group sizes. The two examples that
follow show how to perform a power analysis for specific experiments.
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TABLE 10.2A: Power Analysis for Paired Test for 2-Fold Difference with α = 0.0001

Population Coefficient of Variation
Num
Reps 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

3 0.4% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%
4 2.2% 1.2% 0.7% 0.5% 0.4% 0.3% 0.2% 0.1% 0.1% 0.1%
5 9.7% 4.8% 2.7% 1.6% 1.1% 0.8% 0.6% 0.3% 0.2% 0.2%
6 29.7% 14.8% 8.0% 4.7% 2.9% 2.0% 1.4% 0.8% 0.5% 0.4%
7 59.4% 33.7% 18.9% 11.0% 6.8% 4.4% 3.0% 1.6% 1.0% 0.7%
8 84.0% 57.4% 35.5% 21.6% 13.5% 8.8% 6.0% 3.1% 1.8% 1.2%
9 95.8% 78.1% 54.7% 35.9% 23.3% 15.4% 10.5% 5.3% 3.1% 2.0%

10 99.2% 91.0% 72.3% 51.7% 35.4% 24.1% 16.7% 8.6% 4.9% 3.1%
11 99.9% 97.0% 85.1% 66.7% 48.7% 34.6% 24.5% 12.9% 7.4% 4.6%
12 * 99.2% 93.0% 78.9% 61.6% 45.8% 33.5% 18.2% 10.5% 6.6%
13 * 99.8% 97.0% 87.7% 72.8% 56.9% 43.1% 24.4% 14.4% 9.0%
14 * * 98.9% 93.3% 81.8% 67.1% 52.8% 31.3% 18.8% 11.9%
15 * * 99.6% 96.6% 88.4% 75.8% 61.9% 38.6% 23.8% 15.3%
16 * * 99.9% 98.4% 92.9% 82.8% 70.1% 46.0% 29.3% 19.1%
17 * * * 99.3% 95.9% 88.2% 77.2% 53.3% 35.0% 23.2%
18 * * * 99.7% 97.7% 92.2% 83.0% 60.3% 40.9% 27.7%
19 * * * 99.9% 98.8% 94.9% 87.6% 66.7% 46.8% 32.3%
20 * * * * 99.4% 96.8% 91.2% 72.5% 52.6% 37.1%
25 * * * * * 99.8% 98.8% 91.4% 76.9% 60.7%
30 * * * * * * 99.9% 97.9% 90.8% 78.9%
35 * * * * * * * 99.6% 96.9% 90.1%
40 * * * * * * * 99.9% 99.1% 95.8%
45 * * * * * * * * 99.8% 98.4%
50 * * * * * * * * 99.9% 99.4%

∗ > 99.9%.
Note: Power analysis for a paired test to detect a 2-fold difference (up- or down-regulated) in gene expression samples
for a significance threshold of 0.0001; this would give approximately 1 false positive on a 10,000-gene array. The power
depends critically on the coefficient of variability of the population. For example, when the population variability is
35%, we can achieve 95% power with 15 biological replicates. If the population variability were 50%, we would require
25 biological replicates to achieve similar power.

EXAMPLE 10.5 CALCULATING THE POWER OF A STUDY

Twenty breast cancer patients have been treated with a 16-week course of doxoru-
bicin chemotherapy. Samples have been taken before and after treatment, and will be
analysed for up- or down-regulated genes using a one-sample t-test. We are analysing
6,500 genes and want no more than one false positive. The coefficient of variabil-
ity of the population is 50%. What is the power of the analysis for identifying 2-fold
up-regulated genes? What fold regulation can we detect with 95% power?

Before applying the formula in Equation 10.2, we make some preliminary cal-
culations:

Significance threshold. In order to have one false positive, we choose a significance
threshold of 1/6500, which is approximately equal to 0.00015.

Standard deviation. We apply Equation 10.1 with v = 0.5 to obtain a standard
deviation of 0.68 in log to base 2.
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TABLE 10.2B: Power Analysis for Unpaired Test for 2-Fold Difference with α = 0.0001

Population Coefficient of Variation
Group
Size 20% 25% 30% 35% 40% 45% 50% 60% 70% 80%

3 1.3% 0.7% 0.4% 0.3% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0%
4 7.9% 3.4% 1.7% 1.0% 0.6% 0.4% 0.3% 0.2% 0.1% 0.1%
5 25.5% 10.9% 5.2% 2.8% 1.7% 1.1% 0.8% 0.4% 0.3% 0.2%
6 50.9% 24.7% 12.2% 6.5% 3.7% 2.3% 1.6% 0.8% 0.5% 0.3%
7 74.1% 42.5% 22.5% 12.3% 7.1% 4.4% 2.9% 1.4% 0.8% 0.6%
8 88.8% 60.5% 35.4% 20.2% 11.8% 7.3% 4.8% 2.3% 1.3% 0.9%
9 95.9% 75.4% 49.0% 29.6% 17.9% 11.2% 7.3% 3.5% 2.0% 1.3%

10 98.7% 86.0% 61.9% 40.0% 25.1% 16.0% 10.5% 5.1% 2.8% 1.8%
11 99.6% 92.6% 72.9% 50.4% 33.0% 21.6% 14.4% 7.0% 3.9% 2.4%
12 99.9% 96.4% 81.6% 60.2% 41.3% 27.7% 18.8% 9.3% 5.1% 3.1%
13 * 98.3% 88.0% 69.0% 49.5% 34.3% 23.7% 11.9% 6.6% 4.0%
14 * 99.3% 92.4% 76.5% 57.4% 41.0% 28.9% 14.8% 8.3% 5.0%
15 * 99.7% 95.4% 82.6% 64.7% 47.7% 34.4% 18.1% 10.1% 6.2%
16 * 99.9% 97.3% 87.4% 71.2% 54.3% 40.0% 21.6% 12.3% 7.5%
17 * * 98.5% 91.1% 76.9% 60.4% 45.6% 25.3% 14.5% 9.0%
18 * * 99.1% 93.8% 81.7% 66.1% 51.1% 29.2% 17.0% 10.5%
19 * * 99.5% 95.8% 85.8% 71.3% 56.4% 33.2% 19.7% 12.3%
20 * * 99.8% 97.2% 89.0% 76.0% 61.4% 37.3% 22.5% 14.1%
25 * * * 99.7% 97.5% 91.4% 81.3% 57.3% 37.8% 24.9%
30 * * * * 99.6% 97.4% 92.2% 73.7% 53.4% 37.4%
35 * * * * 99.9% 99.3% 97.1% 85.2% 67.2% 50.2%
40 * * * * * 99.9% 99.1% 92.3% 78.2% 61.9%
45 * * * * * * 99.7% 96.3% 86.2% 72.0%
50 * * * * * * 99.9% 98.3% 91.7% 80.1%

∗ > 99.9%.
Note: Power analysis for an unpaired test to detect a 2-fold difference (up- or down-regulated) in gene expression
samples for a significance threshold of 0.0001; this would give approximately 1 false positive on a 10,000-gene array.
The group size is the number of biological replicates in each group: if this were a clinical study, the total number
of patients would be twice the group size. This table also assumes that the two groups are of equal size (balanced
design). If the groups are of unequal size, the power is decreased. The power depends critically on the coefficient of
variability of the population. For example, when the population variability is 35%, we can achieve 95% power for a
group size of 19. If the population variability were 50%, we would require a group size of 35 to achieve similar power.

Delta. A two-fold up- or down-regulation corresponds to a log ratio difference of 1
in log to base 2.

To calculate the power of detecting 2-fold regulated genes we use the formula

power.t.test(n=20, delta=1, sd=0.68, sig.level=0.00015,
type=“one.sample”, alternative=“two.sided”)

and obtain apowerof 0.94, which is 94%. This means that applying a statistical analysis
with a significance threshold sufficient to give approximately one false positive result
will return 94% of the genes that are truly 2-fold differentially expressed.

To find out what fold regulation can be detected with 99% power, we use the formula

power.t.test(n=20, power=0.99, sd=0.68, sig.level=0.00015,
type=“one.sample”, alternative=“two.sided”)
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and find delta equal to 1.16. The fold ratio is equal to 21.16 = 2.23, so we can detect
99% of the genes that are 2.23-fold regulated.

EXAMPLE 10.6 DETERMINING THE NUMBER OF PATIENTS NEEDED FOR A STUDY

In a new study of breast cancer chemotherapy, we want to identify genes that are two-
fold up- or down-regulated following treatment with doxorubicin. We will be analysing
10,000 genes and want at most 1 false positive result. The coefficient of variability in
the population is 50%. There are two possible experimental designs:

� Take samples from the same patient before and after therapy, and perform a
paired analysis on the log ratio of the gene expression in the patients.

� Recruit two groups of patients, one to be treated and one to be untreated, and
perform an unpaired analysis on the gene expression measurements from the
patients in the two groups.

We want to identify how many patients we need in order to identify 95% of the 2-fold
differentially expressed genes, and which experimental design requires fewer patients
to be recruited to the experiment.

The preliminary calculations are similar to Example 10.5. The significance level is
1/10000 = 0.0001; the standard deviation is 0.68 and delta is 1.

To find the number of patients needed for the first experimental design, we use the
formula

power.t.test(power=0.95, delta=1, sd=0.68, sig.level=0.0001,
type=“one.sample”, alternative=“two.sided”)

and obtain n= 21.48950. A fractional number of patients is meaningless, so we round
this number up and conclude that we would need 22 patients to achieve the desired
power.

To find the number of patients needed for the second experimental design we use
the formula

power.t.test(power=0.95, delta=1, sd=0.68, sig.level=0.0001,
type=“two.sample”, alternative=“two.sided”)

and obtain n = 32.15861. This is the group size, so we would need two groups of 33,
which would mean a total of 66 patients.

We need fewer patients for the paired analysis than for the unpaired analysis, so
the first experimental design is better. This illustrates a general principle that paired
analyses are usually more powerful than unpaired analyses. With the paired analysis,
the difference in gene expression is calculated with two measurements from the same
patient, so individual variabilities are cancelled out. With the unpaired analysis, we
compare the mean of gene expression in the two groups; the variabilities between
individuals contribute to each of the means. Because of this, the unpaired analysis is
less powerful than the paired analysis.
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KEY POINTS SUMMARY

� Use blocking to remove problems of confounded variables.
� Use randomisation and blinding to remove the problem of bias.
� Avoid reference samples when comparing two samples from the same individual.
� Use reference samples for comparing many individuals or time series.
� Avoid single-channel technology for time series where there may be global changes

in gene expression.
� Compute the number of biological replicates using power analyses.
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CHAPTER ELEVEN

Data Standards, Storage and Sharing

SECTION 11.1 INTRODUCTION

In this book we have described many different types of microarray experiment. All
these experiments generate large volumes of complex data. As scientists, we need to
be able to communicate the results of our experiments with other scientists. There
are many reasons why scientists seek to share data, including the following:

� Toverifytheresultsofapublishedmicroarrayexperiment. It is accepted that for
scientific results to be published in a refereed journal, it is necessary to provide
sufficient information so that others can reproduce the experiment.

� To perform further experimental work based on the results. Microarray data
frequently generate hypotheses that require further experimental investigation;
often, microarray experiments are performed precisely to generate such hy-
potheses.

� To undertake further data analysis of the results. Sometimes it is possible to
perform further data analysis beyond the analyses carried out by the researchers
in their original paper, which requires full access to the data.

� To compare the results with other functional genomics data. It is valuable
to make comparisons either between different microarray experiments, or be-
tween microarray data and data from other sources (e.g., proteomics).

� Todevelopnoveldataanalysismethods.Bioinformatics researchers developing
novel data analysis methods need data sets for testing their methods.

Data sharing is not simply a function of scientists. A microarray laboratory will
typically run a number of different computer applications to capture, store, publish
and analyse microarray data (Figure 11.1). In order for the laboratory to operate suc-
cessfully, each of these computer applications needs to be able to exchange data with
the other.

This chapter looks at the mechanisms that allow microarray users and software to
handle and share data. It is arranged into three further sections:

Section 11.2: Software and Standards, looks at the software components that are
used in a microarray laboratory, the reasons for needing standards, and the Mi-
croarray Gene Expression Database group that is coordinating the standards.
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Feature
Extraction

Laboratory
Information

Management
System
(LIMS)

Visualisation
and Analysis

Local
Results

Database

Sequence
Databases

Public
Results

Database

Array
Layout

File

Figure 11.1: Software components for microarray data handling. The successful running of a mi-
croarray facility involves several software components that need to be integrated. Data should flow
seamlessly between the different components, and ideally it should be possible to replace any com-
ponent without affecting the other parts of the flow. (a) Array Layout File is a file containing details of
what sequences and genes each feature represents. There are currently many formats for these files,
depending on the platform you are using. (b) Sequence Databases contain information about the genes
that the microarray is measuring and the sequences from which the sequences on the array derive.
Accession numbers are included in the array layout so that it is possible to connect to these databases.
Sequence databases are discussed in full in Chapter 2. (c) Feature Extraction software is discussed in
Chapter 4. It converts the image of the microarray from the scanner into quantitative information about
gene expression. It needs information from the array layout file to be able to annotate the features.
(d) Laboratory Information Management System (LIMS) records all information about the laboratory
methods and protocols used in microarray manufacture, sample preparation and labelling, hybridisa-
tion and washing. (e) Local Results Database contains results of experiments performed at the local
institution. It can be in the form of a formal database or data warehouse, or the data might be stored as
a series of files. The database needs to be able to link the feature extracted data with the experimental
information stored in the LIMS. (f) Public Results Database contains results of microarray experiments
that have been published in the public domain. If appropriate, data from the local results database
might be transferred to a public database. (g) Visualisation and Analysis software allows the user to
look at and interpret microarray data. The data could be from the local results database, public data,
or a combination and comparison of the two.

Section 11.3: Minimal Information about a Microarray Experiment, describes
the specifications drawn up for the Minimal Information About Microarray
Experiments (MIAME), and the technologies to implement them in software.

Section 11.4: Ontologies, discusses the ontologies that are being developed to de-
scribe microarray experiments.
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SECTION 11.2 SOFTWARE AND STANDARDS

In order to run a microarray facility, there are several software components that are
needed: a laboratory information management system (LIMS), feature extraction
software, and data analysis software. In addition, the running of microarray experi-
ments also relies on databases, including sequence databases, local results databases
and public microarray databases. The interrelationship between these components
is shown in Figure 11.1.

Sequence databases and feature extraction software are discussed in Chapters
2 and 4, respectively. This section looks at LIMS, data warehouses and data anal-
ysis software. A selection of commonly used software packages is shown in Table
11.1. This list is by no means complete, and there are always new microarray soft-
ware components becoming available both from academic groups and commercial
organisations.

Laboratory Information Management System (LIMS)

A LIMS records all information about the laboratory experiment, including all pro-
cedures, protocols and methods in microarray manufacture, sample preparation and
labelling, and hybridisation. At one level, a LIMS can be thought of as a computerised
laboratory notebook, but with two key benefits:

� Track data. The LIMS can be used to record every step of the experimental
process as it happens, including identity of experimenter, date, protocols used,
and any experimental parameters. The advantages of tracking data are many:
� Quality control. Any problems can be traced back to the source.
� Data reproducibility. If the entire experimental process has been recorded, it

is possible for other scientists to reproduce the experiment.
� Data comparison. By knowing all parameters of the experiment, it is more

meaningful to make comparisons between different microarray experiments
and to know when comparisons are less meaningful.

� Data publication. If the LIMS system is MIAME-compliant (see the following
discussion), then it will record all the information necessary for publishing
the data in a MIAME-compliant microarray database.

� Standard protocols. One feature of LIMS systems is that it is possible to in-
clude standard protocols as workflows that can help ensure that all staff in
the laboratory (or group of collaborating laboratories) follow the same pro-
tocol. This helps to standardise microarray experiments performed by several
people.

Local Data Warehousing

The results of microarray experiments performed in a laboratory or institution will
usually be stored on local computers until such time as it might be relevant to store
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the data in a public database. There are usually three types of data that would need to
be stored:

� Images.The images of the arrays from the scanner. These are typically TIFF files
and can be large: with 10-µm pixel sizes, a typical microarray image would be
7500 × 2200 pixels and 32 Mb in size.

� Feature-extracted data. The output from the feature extraction software (Table
4.2). These files can also be large: approximately 2.5 Mb for a 10,000-feature
microarray.

� Gene expression data table. A summarised output of gene expression from all
of the arrays in the experiment. The size of these files depends on the size and
scope of the experiment.

There are two ways to store this data:

� As files. The data is stored directly on the laboratory’s or institution’s computer.
This is easy to implement and does not require purchase of special software.
However, it becomes difficult to track and query the data if larger numbers of
experiments are being performed.

� In a local database. There are several products available both from commercial
organisations and from academic groups that allow for local storage of microar-
ray data. These enable good tracking and management of experimental data and
integration with public microarray databases. However, it requires the purchase,
installation and maintenance of a complex software product.

In general, smaller laboratories running a small number of microarray experiments
can work effectively without a local data warehouse system. But larger institutions or
companies working with a large number of microarrays will almost certainly need the
data management facilities of a local data warehouse.

Data Analysis and Visualisation

It is the visualisation and analysis of your data that leads to the exciting results for
which you have performed your microarray experiments. There is a wide range of
software available for data analysis, some of which has been specifically written for
microarrays. This software falls into three general categories (Table 11.2):

� General graphical data analysis software packages. These are software pack-
ages with graphical user interfaces that have been written for general use and
which can be used for analysing microarray data. The most familiar example is
Microsoft Excel, but other packages such as Spotfire also fall into this category.

� General advanced statistics or data analysis software packages. These are ap-
plications written to provide flexible and advanced data analysis functionality,
with the ability to write and export scripts. The most commonly used examples
are R and Matlab.

� Graphical applications for microarray data analysis. These are packages writ-
ten specifically for the analysis of microarray data. There are many such pack-
ages, including GeneSpring, J-Express and Expression Profiler.
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Most microarray laboratories use a combination of all these types of software in order
to benefit from the strengths of each of the platforms. If you are looking for a data
analysis package to use, your best option is to evaluate as many software packages
from as many sources as you can, and choose the ones that work best for you.

The Need for Standards

When sharing data, either between scientists or between computer applications, it is
helpful if the data conform to standards. When communicating between individuals,
standards are helpful because they can ensure that people understand what others are
saying. For example, the terms probe and target have been used by different people
interchangeably to mean the DNA on the array or the labelled DNA in solution that
will be hybridised to the array.

Standards are essential for designing computer software that can integrate with
other applications. If the people writing the software have a common set of stan-
dards for data representation and exchange, then it becomes possible for different
academic groups or commercial organisations to write software applications or mi-
croarray databases that are able to work with applications developed elsewhere. It
then becomes possible for an organisation using microarrays to obtain and connect
software from several sources.

In order for standards to be successful, they need to have several qualities:

� Useful.The standards should be a genuine aid to storing and sharing microarray
data.

� Consensual.The standards should be developed and agreed upon by microarray
users.

� Flexible.The standards need to be designed to be able to accommodate all types
of microarray experiments and data, including experiments that have not yet
been thought of.

� Comprehensible. It should be easy for all microarray users to understand the
standards.

� Easy to implement. It should be straightforward for programmers to implement
the standards into software for microarray use.

� Widelyadopted. In order to be of global benefit, the standards should be adopted
by as many research groups and commercial organisations as possible. In order
to achieve this, it is hoped that a requirement of publication of microarray results
will be submission of data to a public-domain database that has adopted the
standards.

Microarray data standards comprise three areas:

� What to record. Which aspects of the microarray experimental process and of
the microarray data need to be recorded. This is the aim of MIAME: Minimal
Information about a Microarray Experiment, discussed in Section 11.3.

� How to describe it.How to describe the experimental methods and microarray
data. For this, we need ontologies: controlled vocabularies and relationships to
describe genes, samples and data. Ontologies are discussed in Section 11.4.
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TABLE 11.3: Organisations Represented on the MGED Board or MGED
Advisory Board

Research Institutes
DNA Data Bank of Japan (DDBJ)
European Bioinformatics Institute (EBI)
European Molecular Biology Laboratory (EMBL)
German Genome Resource Centre
Jensen Research Foundation
Max Plank Institute for Molecular Genetics
National Centre for Biotechnology Information (NCBI)
National Centre for Genome Resource (NCGR)
National Human Genome Research Institute (NHGRI)
RIKEN
The Institute of Genetics Research (TIGR)
The Jackson Laboratory
Vlaams Instituut voor Biotechnologie

Universities
Duke University
Imperial College, London
Stanford University
UMC Utrecht
Rockefeller University
Universite D’Aix-Marseille II
University of California at Berkeley
University of Colorado
University of Pennsylvania
University of Washington

Commercial Organizations
Affymetrix
Agilent
Clontech
Genelogic
Incyte
Iobion
Ipsogen
Lion Biosciences
Rosetta

Other
Open Informatics
Science Magazine

� How to implement it. How to implement MIAME and ontologies in com-
puter software. This requiresobjectmodels, exchange languages and language-
specific modules, and is discussed briefly at the end of Section 11.3.

The Microarray Gene Expression Data Society (MGED)

The need for microarray data standards was recognised relatively early in the mi-
croarray community. In November 1999, the Microarray Gene Expression Data Soci-
ety (MGED) was founded, with the intention of establishing standards for microarray
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data annotation and to enable the creation of public databases for microarray data.
The MGED board of directors and advisory board now has representation from many
of the major institutions involved with microarrays, including research institutes, uni-
versities, commercial organisations and journals (Table 11.3).

MGED has an annual meeting at which major developments are discussed and
arranges regular workshops, tutorials and programming jamborees. MGED’s work is
arranged into four working groups:

� MIAME. Minimal Information About a Microarray Experiment formulates the
information required to record about a microarray experiment in order to be
able to describe and share the experiment.

� Ontologies.Determines ontologies for describing microarray experiments and
the samples used with microarrays.

� MAGE. Formulates the object model (MAGE-OM), exchange language (MAGE-
ML) and software modules (MAGE-stk) for implementing microarray software.

� Transformations. Determines recommendations for describing methods for
transformations, normalisations and standardisations of microarray data.

SECTION 11.3 MINIMAL INFORMATION ABOUT
A MICROARRAY EXPERIMENT

The aim of MIAME is to outline the minimum information that should be recorded
about a microarray experiment so that the data can be fully understood and the exper-
iment fully reproduced in another laboratory. It is intended to assist the exchange of
microarray information between researchers, including doing so via the development
of public microarray data repositories. It is not intended to be a formal specification,
but a set of guidelines. However, it has become the standard for many microarray
software packages and databases, so it is highly recommended that you record data
from your experiments in a way that is compliant with MIAME.

MIAME is arranged into two broad areas (Figure 11.2):

� Array design description
� Experiment description

The reason for this distinction is that the array design is frequently independent of
the experiment, with the same array design being used for many experiments. For
example, the Affymetrix U133 GeneChip is used in many laboratories for many dif-
ferent types of experiment and can be described independently of any specific exper-
iment using it.

Array Design Description

The aim of the array design description is to give a detailed description of the array, in-
cluding physical factors (size and material), chemical factors (type of attachment) and
logical factors (sequences). To describe the sequences on an array, MIAME introduced
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Samples,
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Figure 11.2: MIAME structure. The information in MIAME is arranged hierarchically. It is principally
divided into two areas: information about arrays and information about experiments using arrays. The
reason for this division is that microarrays are frequently manufactured independently of the experi-
ments and then used for a wide range of experiments. For example, the Affymetrix U133 GeneChip is
used by many laboratories for many different experiments, and thus can be described independently of
any experiment. The information about experiments is further divided into four broad areas: the design
of the experiment; the samples used in the experiment and the methods used to prepare and label
them; the hybridisation steps and parameters from the hybridization; and the data itself, together with
any information about normalization or transformation of the data.

three new terms:

� Feature. The location on the array containing the DNA sequence (also com-
monly referred to as spots).

� Reporter. The DNA sequence on a feature.
� Composite sequence. The (gene) sequence from which the reporter derives;

there could be several different reporter sequences for the same gene.

The array design description is arranged into seven types of information.

1. Array-related information:
� Array design name.
� Platform type. Whether the array is in-situ synthesised, spotted or some

other type of array.
� Surface and coating specification. The physical composition of the array

(nylon or glass), and description of any chemical derivitisation on the surface
of the array.

� Physical dimensions of the array.
� Number of features on the array. Includes the number of features in both x

and y, and details of any grids on the array.
� Availability.Name of supplier and catalogue number for commercial arrays,

or production protocol for custom-made arrays.
2. Reporter type information:

� Type of reporter.Whether the reporters are synthetic oligonucleotides, PCR
products, plasmids, colonies or other.

� Single- or double-stranded.
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3. For each reporter:
� Sequence or PCR information. The sequence if known (e.g., oligonucleo-

tides), sequence accession number or primer pairs (if relevant).
� Exact or approximate length of sequence.
� Clone information. If relevant, the clone ID, clone provider, date of provision

and availability of the clone.
� Element generation protocol. Sufficient information to reproduce the ele-

ment on custom arrays that are not generally available.
4. Feature type information:

� Dimensions. The physical size of the features.
� Attachment. Covalent, ionic or other; if the feature is an oligonucleotide,

whether attachment is from 3′ or 5′ end of oligonucleotide.
5. For each feature:

� Location on the array. Both physical and logical coordinates.
� Which reporter.Which reporter sequence is on the feature.

6. For each composite sequence:
� Which reporters it contains.
� The reference sequence.
� Gene or EST names. Including links to appropriate databases (e.g., UniGene

or RefSeq).
7. Control elements on the array:

� Position of the feature. Logical coordinates.
� Control type. Spiking, normalisation, negative or positive.
� Control qualifier. Endogenous or exogenous.

Experiment Description

The aim of the experiment description is to give sufficient information that another
laboratory would be able to repeat the experiment. An experiment may consist of one
or more hybridisations to one or more types of array. The experimental description is
broken into four main parts, each of which has several components:

1. Experimental design
� Authors, laboratory and contact information.
� Type of experiment. Typical experiments might be normal vs. disease com-

parison, treated vs. untreated comparison, time course or dose response.
� Experimental factors. These are the parameters or conditions that are tested

in the experiment; for example, treatment, time, dose or genetic variation.
� Number of hybridizations in the experiment.
� Whether or not a common reference sample has been used.
� Quality control steps. These include replications at different levels, the use

of dye reversal, or the inclusion of quality control features.
� Description of experiment and its goal.
� Links to journal and/or web publication of the experiment.
� Journal or URL citations.
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2. Samples used, extract preparation and labelling
MIAME devised a hierarchical terminology for describing the samples that are
hybridised to arrays.
� Biosource properties. The biosource is the term used to describe the organ-

ism from which the sample that will by hybridised to the array is derived. It
has the following properties:
� Organism.Names are used from the NCBI taxonomy (e.g.,Homo sapiens).
� Contact details. Who to contact for information about the sample (e.g.,

dov@bius.co.uk).
� Descriptors relevant to the sample.

� Sex, e.g., male, female, hermaphrodite.
� Age. Including relevant units (days, months, years), and whether from

birth or embryolysis.
� Developmental stage. An organism could develop at different rates de-

pending on environmental conditions so this is included in addition to
age.

� Organism part. Tissue.
� Cell type.
� Animal/plant strain or line.
� Genetic variation, e.g., wild-type, gene knockout or transgenic variation.
� Individual genetic characteristics. Disease-associated alleles or poly-

morphisms.
� Additional clinical information.
� Individual ID.

� Biomaterial manipulations. These are the laboratory processes carried out
to the biosource as part of the experiment. They include
� Growth conditions.
� In vivo treatments.
� In vitro treatments, including cell culture conditions.
� Treatment type, e.g., small molecule (drug), heat shock, food deprivation.
� Separation technique, e.g., none, microdissection, FACS.

� Hybridisation extract preparation protocol. This is the nucleic acid that is
extracted from the biomaterial that will be labelled:
� Extractionmethod, e.g., URL of protocol.
� Extract type, e.g., total RNA, mRNA or genomic DNA.
� Amplification, e.g., RNA polymerases or PCR.

� Labeling protocol. For each extract:
� Amount of nucleic acid labelled.
� Label used, e.g., A-Cy3, G-Cy5 or 33P.
� Label incorporationmethod, e.g., URL of protocol.

� External controls added to hybridization extract. These are spiking controls
added for quality control purposes.
� Element on array expected to hybridise to spiking control.
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� Spike type, e.g., oligonucleotide or bacterial DNA.
� Spike qualifier, e.g., concentration, expected ratio or labelling methods.

3. Hybridisation procedures and parameters.
� Information about which labelled extracts have been hybridised to which
arrays. The labelled extracts relate to the sample, and the array will relate to
array design information (see earlier discussion).

� Hybridisation protocol. This would normally include
� The solution, e.g., Na+ concentration or formamide concentration.
� Blocking agent, e.g., COT1.
� Wash procedure, e.g., temperature and Na+ concentration.
� Quantity of labelled target used.
� Time, concentration, volume and temperature.
� Hybridization instruments, e.g., manufacturer and model.

4. Measurement data and specifications of data processing
MIAME provides standards for describing the data from a microarray experi-
ment at three levels. At the lowest level, the raw data is the image of the array.
The second level is the image quantitation table, which contains the informa-
tion produced by the feature extraction software such as mean pixel intensity,
number of pixels and pixel standard deviation (Table 4.3). At the highest level,
gene expression measurements from all the arrays in the experiment are nor-
malised and combined to produce a gene expression measurement table for
the experiment.
� Raw data description. The protocols and settings for scanning including

� Scanningprotocol, including scanning hardware and software (e.g., make,
model number or version), and scan parameters, including laser power,
spatial resolution, pixel space and photomultiplier tube (PMT) voltage.

� Scanned images.There is no consensus in MGED as to whether the images
themselves should be provided. There are two advantages of providing
images. First, they are the raw data, and thus provide better validation of
results, particularly where features may be flagged. Second, advances in
feature extraction software may mean that it would be desirable to revisit
old images and obtain new quantitative data. However, images are large in
size and so inclusion of images would be expensive and difficult for many
laboratories.

� Image analysis and quantitation.
� Image analysis software. The specification and version of the feature ex-

traction software, the algorithm and all parameters used.
� Image analysis output. For each image, the complete output of the image

analysis software. This is the image quantitation table.
� Normalized and summarized data. This is the gene expression data matrix

containing data from the whole experiment.
� Data processing protocol, including details of any normalization algo-

rithms used.
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� Gene expression data tables:
� Derivedmeasurement values.These summarise the replicates (whether

on the same or different arrays), or different elements (sequences) for
the same gene.

� Reliability indicator for each data point, e.g., a standard deviation or
median absolute deviation from the median. The inclusion of a reliability
indicator is strongly encouraged but not essential. (Much legacy data
does not have reliability indicators.)

MAGE

MicroArray and Gene Expression (MAGE) is the technical implementation that al-
lows software to be developed using MIAME. MAGE will be of interest to individuals
seeking to develop microarray software that is fully supportive of MIAME. MAGE is
under constant review, and it is recommended that if you are interested in using
MAGE, you should visit the MGED web site and obtain the most current information.
However, MAGE Version 1 is now set, and any new changes will appear in Version 2.

MAGE contains three subsections:

� MAGE-OM. The MAGE object model for MIAME. An object model is a design
that represents structured complex information, such as the information in a
microarray experiment. Object models are used as the design for databases, so
a MIAME-compliant microarray LIMS or database would use MAGE-OM as its
design.

� MAGE-ML. The XML implementation of MAGE-OM. XML (eXtensible Markup
Language) is a data exchange language that is similar to HTML (the language
via which web pages operate), except that the user can define tags and terms
to be used. It is used to transfer information between databases and software
components. Any microarray database that is MIAME-compliant will be able to
import and export data in MAGE-ML format. Therefore, MAGE-ML operates as a
standard around which any microarray databases or software can be integrated.

� MAGE-stk. MAGE software toolkit containing functionality to convert MAGE-
OM into MAGE-ML in a number of languages, including Perl and Java.

SECTION 11.4 ONTOLOGIES

Section 11.3, MIAME, details what information is needed to be recorded from a mi-
croarray experiment in order to be able to reproduce the experiment. Ontologies
provide a solution for how that information can be recorded. The aim of an ontology
is to give the framework for a formal representation of a subject. An ontology consists
of two parts:

� Vocabulary. The words and names of the items in the subject area that are to be
described.
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� Relationships. The ways in which the items in the subject area relate to one
another.

There are three reasons for using ontologies:

� Unambiguity. The use of ontologies enables one scientist to understand pre-
cisely the terms that another scientist is using in an unambiguous way.

� Conceptual framework. Ontologies are built on a conceptual framework that
can help in understanding the information about a subject.

� Databasedesignandquerying.The most important reason for using ontologies
is that they help the development of computer databases that hold information
about a subject. By introducing a controlled vocabulary, it is possible to query
databases using the controlled terms and, in doing so, find all references that
relate to the term of interest.

There are many applications of ontologies in information science. In the field of mi-
croarrays there are three sets of ontologies that are used: taxonomic ontologies, gene
ontologies andMGED ontologies.

Taxonomic Ontologies

Taxanomic ontologies are the most familiar: every living organism is placed in a hi-
erarchy of kingdom, phylum, class, order, family, genus and species. The genus and
species together form the scientific name of the organism (e.g.,Homo sapiens). There
are controlled vocabularies for each of the terms, and the terms relate hierarchically.

Using scientific names for organisms makes good sense because it helps scientists
to know exactly what species another scientist is referring to. For example, suppose you
referred to an organism you had used for a microarray experiment as yeast. Another
scientist might not know whether you were referring to Saccharomyces cerevisiae
(baker’s yeast), Schizosaccharomyces pombe (fission yeast), or possibly a different
species commonly referred to as yeast (e.g., Candida albicans).

Gene Ontologies and the GO Consortium

Gene ontologies provide a set of terms for describing genes and their products. The
Gene Ontology (GO) Consortium was set up in 1999 in order to provide a common
framework for its members to be able to describe genes and gene products. The con-
sortium members are shown in Table 11.4. GO has allowed its members to have a com-
mon set of terms for annotating genomes. There are three advantages to using GO:

� Unambiguous gene descriptions
� Simplified database querying
� Easier cross-species comparison

GO has organised ontologies for describing genes on three levels:

� Molecular function.The task performed by individual gene products (e.g., tran-
scription factor or Serine/Threonine protein kinase).
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TABLE 11.4: Members of the Gene Ontology (GO) Consortium

FlyBase Database for the fruitfly Drosophila melanogaster
Berkeley Drosophila Genome Project Drosophila informatics; GO database & software
Saccharomyces Genome Database (SGD) Database for the budding yeast Saccharomyces

cerevisiae
Mouse Genome Database (MGD) & Gene

Expression Database (GXD)
Databases for the mouse Mus musculus

The Arabidopsis Information Resource (TAIR) Database for the brassica family plant Arabidopsis
thaliana

WormBase Database for the nematode Caenorhabditis elegans
PomBase Database for the fission yeast Schizosaccharomyces

pombe
Rat Genome Database (RGD) Database for the rat Rattus norvegicus
DictyBase Informatics resource for the slime mold

Dictyostelium discoideum
The Pathogen Sequencing Unit The Wellcome Trust Sanger Institute
Genome Knowledge Base (GKB) At Cold Spring Harbor Laboratory
EBI InterPro – SWISS-PROT – TrEMBL groups
The Institute for Genomic Research (TIGR)
Gramene A Comparative Mapping Resource for Monocots
Compugen (with its Internet Research Engine)

� Biological process. The broad biological goal of the gene product (e.g., mitosis
or protein degredation).

� Cellular component. The subcellular organelle, location or macromolecu-
lar complex in which the gene product would operate (e.g., nucleus or
telomere).

Each of these areas has a separate ontology defined for it, and any gene would have
terms from all three ontologies.

EXAMPLE 11.1 GO ANNOTATION FOR ACT1 (ACTIN) IN Saccharomyces cervisiae

The GO terms for ACT1 in S. cerevisiae are shown in Box 11.1. There are GO terms
for each of molecular function, biological process and cellular component. Each GO
annotation has associated evidence of one or more citations and the type of evidence
for the annotation (Table 11.5).

Each term in GO has several fields associated with it:

� GO ID, a unique numerical identifier
� Synonyms, alternative terms for the same term
� Last updated, date and time that the GO ID were updated
� Parents, more general classes to which the term belongs
� Children, more specific classes which derive from the term
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BOX 11.1 GO Annotation for ACT1 in Saccharomyces cerevisiae

� Molecular Function
� Histone acetyltransferase
� Structural protein of cytoskeleton

� Process
� Mitochondrian inheritance
� Vacuole inheritance
� Mitotic spindle orientation
� Establishment of cell polarity (sensu Saccharomyces)
� Regulation of transcription from Pol II promoter
� Exocytosis
� Endocytosis
� Response to osmotic stress
� Cell wall organization and biogenesis
� Apical bud growth
� Isotropic bud growth
� Sporulation (sensu Saccharomyces)
� Protein secretion
� Cytokinesis
� Histone acetylation
� Cell cycle dependent actin filament reorganization
� Vesicle transport along actin filament

� Component
� Histone acetyltransferase complex
� Actin cable (sensu Saccharomyces)
� Contractile ring (sensu Saccharomyces)
� Actin cortical patch (sensu Saccharomyces)
� Actin filament

EXAMPLE 11.2 GO ENTRY FOR EXOCYTOSIS

The GO entry for the biological process Exocytosis is shown in Box 11.2. Each of the
parent terms is a more general process of which exocytosis is one example; each of
the child terms is a more specific type of exocytosis.

As we can see in Example 11.2, GO terms, and ontology terms in general, exist in
a hierarchy of more general and more specific classes. In classical ontologies, each

TABLE 11.5: Evidence Annotation for the First Two GO Entries for ACT1

Histone Galarneau, L. et al., 2000. Multiple links between the IDA: Inferred from Direct
acetyltransferase NuA4 histone acetyltransferase complex and Assay (Last updated on

epigenetic control of transcription. Mol Cell 2002-09-18)
5(6):927–37.

Structural Botstein, D. et al., 1997. The yeast cytoskeleton in TAS: Traceable Author
constituent of The Molecular and Cellular Biology of the Yeast Statement (Last updated on
cytoskeleton Saccharomyces: Cell Cycle and Cell Biology, Vol. 3. 2001-01-19)



248 DATA STANDARDS, STORAGE AND SHARING

BOX 11.2 GO Entry for Exocytosis

� Term Name: exocytosis
� Term ID: GO:0006887
� Synonyms: secretion, vesicle exocytosis
� Last updated: 2001-03-30 04:29:44.0
� Parent Terms: Process (3):

� protein transport (GO:0015031)
� vesicle-mediated transport (GO:0016192)
� secretory pathway (GO:0045045)

� Child Terms: Process (4)
� regulation of exocytosis (GO:0017157)
� calcium ion dependent exocytosis (GO:0017156)
� non-selective vesicle exocytosis (GO:0016194)
� synaptic vesicle exocytosis (GO:0016079)

term may only have one parent. However, due to the complexity of biological infor-
mation, in GO each term can have more than one parent. It is sometimes useful to
think of the terms as being in a tree; more precisely, the terms are organised in what
is known as a directed acyclic graph.

EXAMPLE 11.3 DIRECTED ACYCLIC GRAPH

A directed acyclic graph showing a subset of GO terms for the molecular function
ATP-dependent DNA helicase is shown in Figure 11.3. ATP-dependent DNA helicase
has three parents, each of which connects to the root of the tree (molecular function)
via several generations.

molecular function

enzymenucleic acid binding

helicaseDNA binding adenosine triphosphotase

chromatin
binding

DNA
helicase

ATP-dependent
helicase

DNA-dependent
adenosine triphosphotase

ATP-dependent DNA helicase

Figure 11.3: Directed acyclic graph. A directed acyclic graph showing the ancestry of the GO term
ATP-dependent DNA helicase. This term has three parent terms, DNA helicase, ATP-dependent helicase
and DNA-dependent adenosine triphosphotase. These terms in turn have parents, eventually leading
back to the root of the ontology tree, molecular function. (Reproduced with Permission from the GO
Consortium.)
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Microarray Ontologies

The Ontologies Working Group at MGED has drawn up ontologies for microarray
annotation with the aim of describing microarray data. The MGED ontology comprises
three broad types of information:

� Classes
� Properties
� Individuals

Classes

Classes are the categories of information, for example, age, sex or protocol. Each class
has a number of fields describing it:

� Namespace. A URL for the ontology.
� Documentation. A free text description of the class.
� Type. In the microarray ontologies, every class is of primitive type. This means

that the class is not fully defined by its constraints.
� Superclasses. The parent classes of which this class is a special case.
� Constraints. These are rules by which any single instantiation of the class con-

tains information. Each constraint is in the form of a property that the class may
have.

� Known subclasses. These are child classes of the class which represent special-
isations of the class.

� Used in classes. These are the classes that use this class as part of a constraint.

EXAMPLE 11.4 EXAMPLE MICROARRAY ONTOLOGY CLASS

The ontology entry for the class protocol is shown in Box 11.3. There is annotation
for each of the fields. The superclass MGEDOntology is the root class from which all
classes are derived. As protocols are widely used in microarray experiments, there are
several constraints that can be used to describe the protocol and many subclasses or
classes that contain protocols as a constraint.

Properties

Properties encapsulate information about classes. A classhasproperties; for example,
the class protocolhas the propertyhas-citation. Each property is then linked to a class
via the constraint in the class that contains the property. In the case of a protocol,
has-citation will take a value in the class BibliographicReference.

EXAMPLE 11.5 EXAMPLE MICROARRAY ONTOLOGY PROPERTY

The microarray ontology entry for the property has-citation is shown in Box 11.4.
Properties generally contain less information than classes: in this case, a link to the
URL for the ontology and a list of classes and individuals which have the property.
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BOX 11.3 Microarray Ontology Entry for the Class Protocol

class Protocol #1
namespace:

http://www.cbil.upenn.edu/Ontology/MGEDontology.rdfs#
documentation:

Documentation of the set of steps taken in a procedure.
type:

primitive
superclasses:

MGEDontology #3
constraints:

restriction has-software #1 has-class Software #1
restriction has-citation #1 has-class BibliographicReference #1
restriction name #1 has-class thing
restriction description #1 has-class thing
restriction has-hardware #1 has-class Hardware #1

known subclasses:
ArrayManufacture #5
Hybridization #5
ImageAcquisition #5
ImageQuantification #5
Labeling #5

used in classes:
ArrayManufacture #5
BiomaterialPreparation #1
CompoundBasedTreatment #1
ContaminantOrganism #1
Hybridization #5
ImageAcquisition #5
ImageQuantification #5
Labeling #5
Preservation #1
Treatment #1
Water #1

Individuals

Individuals are instances of classes that are formally included in the ontology. For
example, the class Gender has individuals male, female, hermaphrodite, mixed-sex
and unknown-sex as instances of the class, which can be used to describe the gender
of a biosource.

BOX 11.4 Microarray Ontology Entry for the Property has-citation

property has-citation #1
namespace:

http://www.cbil.upenn.edu/Ontology/MGEDontology.rdfs#
used in classes:

Protocol #1
Study #3
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BOX 11.5 Microarray Ontology Entry for the Individual male

individual male #1
namespace:

http://www.cbil.upenn.edu/Ontology/MGEDontology.rdfs#
instance of:

Gender #1

EXAMPLE 11.6 EXAMPLE MICROARRAY ONTOLOGY INDIVIDUAL

The microarray ontology entry for the individualmale is shown in Box 11.5. Individuals
have very little information associated with them: in this case, just a namespace and
the class Gender of which male is an instance of.

KEY POINTS SUMMARY

� Microarray data is shared both by scientists and by computer software.
� Data sharing is enabled by data standards.
� MGED is responsible for data standards for microarrays.
� MIAME is the minimal information about a microarray experiment.
� MAGE enables software implementation of MIAME.
� Ontologies provide formal ways of describing species, genes and microarray ex-

periments.

RESOURCES

http://www.mged.org/

The MGED web site, which contains information on MIAME, microarray ontologies and

MAGE.

http://www.geneontology.org/

The GO Consortium web site containing information on gene ontologies and the labora-

tories that form part of the consortium.

http://protege.stanford.edu/publications/ontology-development/
ontology101-noy-mcguinness.html

Ontology Development 101: A Guide to Creating Your First Ontology. A useful resource

with an excellent description of ontologies.

Public Microarray Databases

http://genome-www5.stanford.edu/MicroArray/MDEV/index.shtml
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The Stanford Microarray Database is the first microarray database available on the Internet.

It contains many important data sets, including those from the pioneering papers that

established microarrays as an important technology.

http://www.ebi.ac.uk/microarray/ArrayExpress/arrayexpress.html

Array Express is the first public implementation of a MIAME-compliant microarray

database, which was developed at the European Bioinformatics Institute.

http://www.ncbi.nlm.nih.gov/geo/

The Gene Expression Omnibus at the NCBI contains data from microarray experiments,

as well as gene expression experiments using other platforms such as SAGE.

Useful Papers

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert,
C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P.,
Holstege, F.C.P., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A.,
Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M. 2001.
Minimum information about a microarray experiment – Towards standards for mi-
croarray data. Nature Genetics 29: 365–71.

Gardiner-Garden, M. and Littlejohn, T.G. 2001. A comparison of microarray databases.
Briefings in Bioinformatics 2: 143–58.



APPENDIX

MIAME Glossary

This appendix has been reproduced in full with permission from MGED. It is also
available from:

http://www.mged.org/Workgroups/MIAME/miame glossary.html

Age The time period elapsed since an identifiable point in the life cycle of an or-
ganism. (If a developmental stage is specified, the identifiable point would be the
beginning of that stage. Otherwise the identifiable point must be specified such as
planting) [MGED Ontology Definition]

Amount of nucleic acid labeled The amount of nucleic acid labeled

Amplificationmethod The method used to amplify the nucleic acid extracted

Arraydesign The layout or conceptual description of array that can be implemented
as one or more physical arrays. The array design specification consists of the descrip-
tion of the common features of the array as the whole, and the description of each
array design elements (e.g., each spot). MIAME distinguishes between three levels of
array design elements: feature (the location on the array), reporter (the nucleotide
sequence present in a particular location on the array), and composite sequence (a
set of reporters used collectively to measure an expression of a particular gene)

Array design name Given name for the array design, that helps to identify a design
between others (e.g., EMBL yeast 12K ver1.1)

Array dimensions The physical dimension of the array support (e.g., of slide)

Array related information Description of the array as the whole

Attachment How the element (reporter) sequences are physically attached to the
array (e.g., covalent, ionic)

Author, laboratory, and contact Person(s) and organization(s) names and details
(address, phone, FAX, email, URL)

Biomaterialmanipulation Information on the treatment applied to the biomaterial

Bio-source properties Information on the source of the sample

Cell line The identifier for the immortalized cell line if one was used to derive the
BioMaterial [MGED Ontology Definition]

Cell type Cell type used in the experiment if non mixed. If mixed the targeted cell
type should be used [MGED Ontology Definition]
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Clone information For each reporter, the identity of the clone along with informa-
tion on the clone provider, the date obtained, and availability

Common reference A hybridization to which all the other hybridisations have been
compared

Composite sequence information The set of reporters contained in the composite
sequence. The nucleotide sequence information for each composite element: number
of oligonucleotides, oligonucleotide sequences (if given), and the reference sequence
accession number (from relevant databases)

Composite sequence related information Information on the set of reporters used
collectively to measure an expression of a particular gene

Compound A drug, solvent, chemical, etc., that can be measured [MGED Ontology
Definition]

Contact details for sample The resource (e.g., company, hospital, geographical lo-
cation) used to obtain or purchase the BioMaterial and the type of specimen [MGED
Ontology Definition]

Control elements position The position of the control features on the array

Control elements related information Array elements that have an expected value
and/or are used for normalization

Control type The type of control used for the normalization and their qualifier

Data processing protocol Documentation of the set of steps taken to process the
data, including: the normalization strategy and the algorithm used to allow compar-
ison of all data

Developmental stage The developmental stage of the organism’s life cycle during
which the BioMaterial was extracted [MGED Ontology Definition]

Disease state The name of the pathology diagnosed in the organism from which the
BioMaterial was derived. The disease state is normal if no disease has been diagnosed
[MGED Ontology Definition]

Element dimensions The physical dimensions of each features

Experiment description Free text description of the experiment and link to an elec-
tronic publication in a peer-reviewed journal

Experiment design Experiment is a lang=EN-US set of one or more hybridizations
that are in some way related (e.g., related to the same publication MIAME distin-
guishes between lang=EN-US : the experiment design (the design, purpose common
to all hybridisations performed in the experiment), the sample used (sample charac-
teristics, the extract preparation and the labeling), the hybridisation (procedures and
parameters) and the data (measurements and specifications)

Experiment type(s) A controlled vocabulary that classify an experiment

Experimental design Design and purpose common to all hybridisations performed
in the experiment
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Experimental factor(s) Parameter(s) or condition(s) tested in the experiment

Extractionmethod The protocol used to extract nucleic acids from the sample

Features related information Information on the location of the reporters on the
array

Final gene expression table(s) Derived measurement value summarizing related
elements and replicates, providing the type of reliability indicator used

Gene name The gene represented at each composite sequence: name and links to
appropriate databases (e.g., SWISS-PTOR or organism specific database)

Genetic variation The genetic modification introduced into the organism from
which the BioMaterial was derived. Examples of genetic variation include specifi-
cation of a transgene or the gene knocked-out [MGED Ontology Definition]

Growth conditions A description of the isolated environment used to grow organ-
isms or parts of the organism [MGED Ontology Definition]

Hybridization protocol Documentation of the set of steps taken in the hybridiza-
tion, including: solution (e.g., concentration of solutes); blocking agent and concen-
tration used; wash procedure; quantity of labelled target used; time; concentration;
volume, temperature, and description of the hybridization instruments

Hybridization extract preparation Information on the extract preparation for each
extract prepared from the sample

Hybridizations Procedures and parameters for each hybridization

Image analysis and quantitation Each image has a corresponding image quantita-
tion table, where a row represents an array design element and a column to a different
quantitation types (e.g., mean or median pixel intensity)

Image analysis output The complete image analysis output for each image

Image analysis protocol Documentation of the set of steps taken to quantify the
image including: the image analysis software, the algorithm and all the parameters
used

In vitro treatment The manipulation of the cell culture condition for the purposes
of generating one of the variables under study and the documentation of the set of
steps taken in the treatment

In vivo treatment The manipulation of the organism for the purposes of generating
one of the variables under study and the documentation of the set of steps taken in
the treatment

Individual genetic characteristics The genotype of the individual organism from
which the BioMaterial was derived [MGED Ontology Definition]

Individual number Identifier or number of the individual organism from which the
BioMaterial was derived. For patients, the identifier must be approved by Institutional
Review Boards (IRBs, review and monitor biomedical research involving human sub-
jects) or appropriate body [MGED Ontology Definition]
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Label incorporationmethod The label incorporation method used

Label used The name of the label used

Measurements MIAME distinguishes between three levels of data processing: image
(raw data), image analysis and quantitation, gene expression data matrix (normalized
and summarized data)

Normalized and summarized data Several quantitation tables are combined using
data processing metrics to obtain the ‘final’ gene expression measurement table (gene
expression data matrix) associated with the experiment

Nucleic acid type The type of nucleic acid extracted (e.g., total RNA, mRNA)

Number of elements on the array The number of features on the array

Number of hybridisations Number of hybridizations performed in the experiment

Organism The genus and species (and subspecies) of the organism from which the
BioMaterial is derived [MGED Ontology Definition]

Organismpart The part or tissue of the organism’s anatomy from which the BioMa-
terial was derived MGED Ontology Definition]

Platform type The technology type used to place the biological sequence on the
array

Production protocol A description of how the array was manufactured

Provider The primary contact (manufacturer) for the information on the array de-
sign

Qualifier, value, source (may use more than once) Describe any further informa-
tion about the array in a structured manner

Quality control steps Measures taken to ensure or measure quality: replicates
(number and description), dye swap (for two channel platforms) or others (unspecific
binding, low complexity regions, polyA tails)

Raw data Each hybridization has at least one image

Relationshipbetweensamplesandarrays Relationship between the labelled extract
(related to which sample which extract) and arrays (design, batch and serial number)
in the experiment

Reporter and location The arrangement and the system used to specify the location
of each features on the array (e.g., grid, row, column, zone)

Reporter approximate length The approximate length of the reporter’s sequence

Reporter generation protocol A description of how the reporters were generated

Reporter related information Information on the nucleotide sequence present in a
particular location on the array

Reporter sequence information The nucleotide sequence information for reporter:
sequence accession number (from DDBJ/EMBL/GenBank), the sequence itself (if
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known) or a reference sequences (e.g., for oligonucleotides) and PCR primers pair
information (if relevant)

Reporter type Physical nature of the reporter (e.g., PCR product, synthesized
oligonucleotide)

Sample The biological material from which the nucleic acids have been extracted
for subsequent labelling and hybridisation. MIAME distinguishes between: source of
the sample (bio-source), its treatment, the extract preparation, and its labeling

Sample labeling Information on the labeling preparation for each labelled extract

Scanner image file The TIFF file including header

Scanning protocol Documentation of the set of steps taken for scanning the array
and generating an image including: description of the scanning instruments and the
parameter settings

Separation technique Technique to separate tissues or cells from a heterogenous
sample (e.g., trimming, microdissection, FACS)

Sex Term applied to any organism able to undergo sexual reproduction in order
to differentiate the individuals or type involved. Sexual reproduction is defined as
the ability to exchange genetic material with the potential of recombinant progeny
[MGED Ontology Definition]

Single or double stranded Whether the reporter sequences are single or double
stranded

Spike type and qualifier The type of spike used (e.g. oligonucleotide, plasmid DNA,
transcript) and its qualifier (e.g., concentration, expected ratio, labelling methods)

Spiking control External controls added to the hybridisation extract(s)

Spiking control feature Position of the feature (s) on the array expected to hybridise
to the spiking control

Strain or line Animals or plants that have a single ancestral breeding pair or par-
ent as a result of brother x sister or parent x offspring matings [MGED Ontology
Definition]

Surface and coating specification Type of surface and name for the type of coating
used

Targeted cell type The targeted cell type is the cell of primary interest. The BioMa-
terial may be derived from a mixed population of cells although only one cell type is
of interest [MGED Ontology Definition]

Treatment type The type of manipulation applied to the BioMaterial for the pur-
poses of generating one of the variables under study [MGED Ontology Definition]
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